
Object Pascal Style Guide
By: Charles Calvert

Abstract: This article documents a standard style for formatting Delphi code. It is based on the

conventions developed by the Delphi team.

Object Pascal Style Guide

This article documents a standard style for formatting Delphi code. It is based on the conventions

developed by the Delphi team.

We take it for granted that many well established shops will have conventions different than those

specified here. As a result, we strongly recommend using a tool that can convert your code into

Borland style before submitting it to Borland, Project JEDI, or any other public source repository. We

don't want to force you to change your conventions, but we insist that all code that ships with

Borland products follows these conventions. We strongly encourage you to follow these conventions

when submitting code into any form of public repository.

Object Pascal is a beautifully designed language. One of its great virtues is its readability. These

standards are designed to enhance that readability of Object Pascal code. When developers follow

the simple conventions laid out in this guide, they will be promoting standards that benefit all Delphi

developers by using a uniform style that is easy to read. Efforts to enforce these standards will

increase the value of a developer's source code, particularly during maintenance and debugging

cycles.

It goes without saying that these are conventions based primarily on matters of taste. Though we

believe in, and admire the style promoted in these pages, we support them not necessarily because

we believe they are right and others are wrong, but because we believe in the efficacy of having a

standard which most developers follow. The human mind adapts to standards, and finds ways to

quickly recognize familiar patterns, thereby assimilating meaning quickly and effortlessly. It is the

desire to create a standard that will make reading code as simple as possible for the largest number

of people that is behind this effort. If at first our guidelines seem strange to you, we ask you to try

them for awhile, and then we are sure you will grow used to them over time. Or, if you prefer, keep

your code in your own format, and run it through a program that follows our guidelines before

submitting it to Borland or to a public repository.

Some text editors, such as Visual SlickEdit can help you format your code according to a particular

style. Readers who are aware of other tools that provide this same service should write me at that

address provided at the end of this section.

One free formatter developed by Egbert van Nes is available at the following URL:

http://www.slm.wau.nl/wkao/delforexp.html.

A commercial option is CrackerJax for Delphi:

http://www.kineticsoftware.com/html/products.html.

Before closing this introduction, I want to reiterate that on the Borland web site, and on the CDs

that we ship with our product, these standards are the law. We want to present our code in a

unified and easy to read style, and enforcing the rules in this guide is the simplest way to achieve

that end.

Do not post this specification on other web sites. Instead, simply link to this version of the

document.

We accept feedback in the form of corrections or suggestions. Send your communications to Charlie

Calvert .

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 1/18

Contents

1.0 Introduction

1.1 Background

1.2 Acknowledgments

2.0 Source Files

2.1 Source-File Naming

2.2 Source-File Organization

2.2.1 Copyright/ID block comment

2.2.2 unit declaration

2.2.3 uses declarations

2.2.4 class/interface declarations

3.0 Naming Conventions

3.1 Unit Naming

3.2 Class/Interface Naming

3.3 Field Naming

3.4 Method Naming

3.5 Local Variable Naming

3.6 Reserved Words

3.7 Type Declarations

4.0 White Space Usage

4.1 Blank Lines

4.2 Blank Spaces

4.2.1 A single blank space (not tab) should be used:

4.2.2 Blanks should not be used:

4.3 Indentation

4.4 Continuation Lines

5.0 Comments

5.1 Block Comments

5.2 Single-Line Comments

6.0 Classes

6.1 Class Body Organization

6.2 Method Declarations

6.3 Data Store Declarations

7.0 Interfaces

7.1 Interface Body Organization

8.0 Statements

8.1 Simple Statements

8.1.1 Assignment and expression statements

8.1.2 Local variable declarations

8.1.3 Array declarations

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 2/18

8.2 Compound Statements

8.2.3 if statement

8.2.4 for statement

8.2.5 while statement

8.2.6 repeat until statement

8.2.7 case statement

8.2.8 try statement

1.0 Introduction
This document is not an attempt to define a grammar for the Object Pascal language. For

instance, it is illegal to place a semicolon before an else statement; the compiler simply won't

let you do it. As a result, I do not lay that rule out in this style guide. This document is meant

to define the proper course of action in places where the language gives you a choice. I

usually remain mute on matters that can only be handled one way.

1.1 Background

The guidelines presented here are based on the public portions of the Delphi source. The

Delphi source should follow these guidelines precisely. If you find cases where the source

varies from these guidelines, then these guidelines, and not the errant source code, should be

considered your standard. Nevertheless, you should use the source as a supplement to these

guidelines, at least so far as it can help you get a general feel for how your code should look.

1.2 Acknowledgments

The format of this document and some of its language is based on work done to define a style

standard for the Java language. Java has had no influence on the rules for formatting Object

Pascal source, but documents found on the Sun web site formed the basis for this document.

In particular the style and format of this document were heavily influenced by "A Coding Style

Guide for Java WorkShop and Java Studio Programming" by Achut Reddy. That document can

be found at the following URL: http://www.sun.com/workshop/java/wp-coding

The Delphi team also contributed heavily to the generation of this document, and indeed, it

would not have been possible to create it without their help.

2.0 Source Files
Object Pascal source is divided up primarily into units and Delphi Project files, which both

follow the same conventions. A Delphi Project file has a DPR extension. It is the main source

file for a project. Any units used in the project will have a PAS extension. Additional files, such

as batch files, html files, or DLLs, may play a role in a project, but this paper only treats the

formatting of DPR and PAS files.

2.1 Source-File Naming

Object Pascal supports long file names. If you are appending several words to create a single

name, then it is best to use capital letters for each word in the name: MyFile.pas. This is

known as InfixCaps, or Camel Caps. Extensions should be in lower case. For historical reasons,

the Delphi source itself often confines itself to 8:3 naming patterns, but developers no longer

need feel constrained by those limits, even if turning in source that might be used by the

Delphi team.

If you are translating a C/C++ header file, then your Pascal header translation will usually have

the same name as the file you are translating, except it should have a PAS extension. For

instance, Windows.h would become Windows.pas. If the rules of Pascal grammar force you to

combine multiple header files into a single unit, then use the name of the base unit into which

you are folding the other files. For instance, if you fold WinBase.h into Windows.h, then call

the resulting file Windows.pas.

2.2 Source-File Organization

All Object Pascal units should contain the following elements in the following order:

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 3/18

Copyright/ID block comment

Unit Name

Interface section

Implementation

A closing end and a period.

At least one blank line should separate each of these elements.

Additional elements can be structured in the order you find most appropriate, except that the

top of the file should always list the copyright first, the unit name second, then any

conditional defines, compiler directives or include statements, then the uses clause:

{***}

{ }

{ Borland Delphi Visual Component Library }

{ }

{ Copyright (c) 1995,98 Inprise Corporation }

{ }

{***}

unit Buttons;

{$S-,W-,R-}

{$C PRELOAD}

interface

uses

 Windows, Messages, Classes,

 Controls, Forms, Graphics,

 StdCtrls, ExtCtrls, CommCtrl;

It does not matter if you place a type section before a const section, or if you mix type and

const sections up in any order you choose.

The implementation should list the word implementation first, then the uses clause, then any

include statements or other directives:

implementation

uses

 Consts, SysUtils, ActnList,

 ImgList;

{$R BUTTONS.RES}

2.2.1 Copyright/ID block comment
Every source file should start with a block comment containing version information and a

standard copyright notice. The version information should be in the following format:

{***}

{ }

{ Widgets Galore }

{ }

{ Copyright (c) 1995,98 Your Company }

{ }

{***}

The copyright notice should contain at least the following line:

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 4/18

Copyright (c) yearlist CopyrightHolder.

If you are a third party creating a file for use by Borland, you may add your name at the

bottom of the copyright notice:

{***}

{ }

{ Borland Delphi Visual Component Library }

{ Copyright (c) 1995,99 Borland International }

{ Created by Project JEDI }

{ }

{***}

2.2.2 Unit declaration
Every source file should contain a unit declaration. The word unit is a reserved word, so it

should be in lower case. The name of the unit should be in mixed upper and lowercase, and

must be the same as the name used by the operating system's file system. Example:

unit MyUnit;

This unit would be called MyUnit.pas when an entry is placed in the file system.

2.2.3 uses declarations
Inside units, a uses declaration should begin with the word uses, in lowercase. Add the names

of the units, following the capitalization conventions used in the declaration found inside the

units:

uses MyUnit;

Each unit must be separated from its neighbor by a comma, and the last unit should have a

semicolon after it:

uses

 Windows, SysUtils, Classes, Graphics, Controls, Forms,

 TypInfo;

It is correct to start the uses clause on the next line, as in the previous example, or you may

start the list of units on the same line:

uses Windows, SysUtils, Classes, Graphics, Controls, Forms,

 TypInfo;

You may format the list of units in your uses clause so that they wrap just shy of 80

characters, or so that one unit appears on each line.

2.2.4 class/interface declarations
A class declaration begins with two spaces, followed by an identifier prefaced by a capital T.

Identifiers should begin with a capital letter, and should have capital letters for each

embedded word (InfixCaps). Never use tab characters in your Object Pascal source. Example:

TMyClass

Follow the identifier with a space, then an equals sign, then the word class, all in lower case:

 TMyClass = class

If you want to specify the ancestor for a class, add a parenthesis, the name of the ancestor

class, and closing parenthesis:

 TMyClass = class(TObject)

Scoping directives should be two spaces in from the margin, and declared in the order shown

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 5/18

in this example:

 TMyClass = class(TObject)

 private

 protected

 public

 published

 end;

Data should always be declared only in the private section, and its identifier should be

prefaced by an F. All type declarations should be four spaces in from the margin:

 TMyClass = class(TObject)

 private

 FMyData: Integer;

 function GetData: Integer;

 procedure SetData(Value: Integer);

 public

 published

 property MyData: Integer read GetData write SetData;

 end;

Interfaces follow the same rules as class declarations, except you should omit any scoping

directives or private data, and should use the word interface rather than class.

Naming Conventions
Except for reserved words and directives, which are in all lowercase, all Pascal identifiers

should use InfixCaps, which means the first letter should be a capital, and any embedded

words in an identifier should be in caps, as well as any acronym that is embedded:

MyIdentifier

MyFTPClass

The major exception to this rule is in the case of header translations, which should always

follow the conventions used in the header. For instance, write WM_LBUTTONDOWN, not

wm_LButtonDown.

Except in header translations, do not use underscores to separate words. Class names should

be nouns or noun phrases. Interface or class names depend on the salient purpose of the

interface.

GOOD type names:

 AddressForm, ArrayIndexOutOfBoundsException

BAD type names:

 ManageLayout // verb phrase

 delphi_is_new_to_me // underscores

3.1 Unit Naming

Use InfixCaps, as described at the beginning of this section. See also the section on unit

declarations

3.2 Class/Interface Naming

Use InfixCaps, as described at the beginning of this section. Begin each type declaration with

a capital T:

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 6/18

TMyType

See also the section on class/interface declarations.

3.3 Field Naming

Use InfixCaps, as described at the beginning of this section. Begin each type declaration with

a capital F, and declare all data types in the private section, using properties or getters and

setters to provide public access. For example, use the name GetSomething to name a function

returning an internal field value and use SetSomething to name a procedure setting that value.

Do not use all caps for const declarations except where required in header translations.

Delphi is created in California, so we discourage the use of notation, except where required in

header translations:

CORRECT

 FMyString: string;

INCORRECT

 lpstrMyString: string;

The exception to the Hungarian notation rule is in enumerated types.

 TBitBtnKind = (bkCustom, bkOK, bkCancel, bkHelp,

 bkYes, bkNo, bkClose, bkAbort, bkRetry,

 bkIgnore, bkAll);

In this case the letters bk are inserted before each element of this enumeration. bk stands for

ButtonKind.

When thinking about naming conventions, consider that one-character field names should be

avoided except for temporary and looping variables.

Avoid variable l ("el") because it is hard to distinguish it from 1 ("one") on some printers and

displays.

3.4 Method Naming

Method names should use the InfixCaps style. Start with a capital letter, and capitalize the

first letter of any subsequent word in the name, as well as any letters that are part of an

acronym. All other characters in the name are lower case. Do not use underscores to separate

words. Note that this is identical to the naming convention for non-constant fields; however it

should always be easy to distinguish the two from context. Method names should be

imperative verbs or verb phrases.

Examples:

// GOOD method names:

ShowStatus, DrawCircle, AddLayoutComponent

// BAD method names:

MouseButton // noun phrase; doesn't describe function

drawCircle // starts with lower-case letter

add_layout_component // underscores

// The function of this method is unclear. Does

// it start the server running (better: StartServer),

// or test whether or not it is running

// (better: IsServerRunning)?

ServerRunning // verb phrase, but not imperative

A method to get or set some property of the class should be called GetProperty or

SetProperty respectively, where Property is the name of the property.

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 7/18

Examples:

GetHeight, SetHeight

A method to test some boolean property of the class should be called IsVisible, where Visible

is the name of the property.

Examples:

IsResizable, IsVisible

3.5 Local Variable Naming

Local variables follow the same naming rules as field names, except you omit the initial F, since

this is not a Field of an object. (see section 3.3).

3.6 Reserved Words

Reserved words and directives should be all lowercase. This can be a bit confusing at times.

For instance types such as Integer are just identifiers, and appear with a first cap. Strings,

however, are declared with the reserved word string, which should be all lowercase.

3.7 Type Declarations

All type declarations should begin with the letter T, and should follow the same capitalization

specification laid out in the beginning of this section, or in the section on class declarations.

4.0 White Space Usage

4.1 Blank Lines

Blank lines can improve readability by grouping sections of the code that are logically related.

A blank line should also be used in the following places:

After the copyright block comment, package declaration, and import section.

Between class declarations.

Between method declarations.

4.2 Blank Spaces

Object Pascal is a very clean, easy to read language. In general, you don't need to add a lot

of spaces in your code to break up lines. The next few sections give you some guidelines to

follow when placing spaces in your code.

4.2.2 Blanks should not be used:

Between a method name and its opening parenthesis.

Before or after a .(dot) operator.

Between a unary operator and its operand.

Between a cast and the expression being cast.

After an opening parenthesis or before a closing parenthesis.

After an opening square bracket [or before a closing square bracket].

Before a semicolon.

Examples of correct usage:

function TMyClass.MyFunc(var Value: Integer);

MyPointer := @MyRecord;

MyClass := TMyClass(MyPointer);

MyInteger := MyIntegerArray[5];

Examples of incorrect usage:

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 8/18

function TMyClass.MyFunc(var Value: Integer) ;

MyPointer := @ MyRecord;

MyClass := TMyClass (MyPointer) ;

MyInteger := MyIntegerArray [5] ;

4.3 Indentation

You should always indent two spaces for all indentation levels. In other words, the first level

of indentation is two spaces, the second level four spaces, the third level 6 spaces, etc.

Never use tab characters.

There are few exceptions. The reserved words unit, users, type, interface, implementation,

initialization and finalization should always be flush with the margin. The final end statement at

the end of a unit should be flush with the margin. In the project file, the word program, and

the main begin and end block should all be flush with the margin. The code inside the

begin..end block, should be indented at least two spaces.

4.4 Continuation Lines

Lines should be limited to 80 columns. Lines longer than 80 columns should be broken into one

or more continuation lines, as needed. All the continuation lines should be aligned and indented

from the first line of the statement, and indented two characters. Always place begin

statements on their own line.

Examples:

// CORRECT

function CreateWindowEx(dwExStyle: DWORD;

 lpClassName: PChar; lpWindowName: PChar;

 dwStyle: DWORD; X, Y, nWidth, nHeight: Integer;

 hWndParent: HWND; hMenu: HMENU; hInstance: HINST;

 lpParam: Pointer): HWND; stdcall;

// CORRECT

if ((X = Y) or (Y = X) or

 (Z = P) or (F = J) then

begin

 S := J;

end;

Never wrap a line between a parameter and its type, unless it is a comma separated list, then

wrap at least before the last parameter so the type name follows to the next line. The colon

for all variable declarations contains no whitespace between it and the variable. There should

be a single space following the colon before the type name;

// CORRECT

procedure Foo(Param1: Integer; Param2: Integer);

// INCORRECT

procedure Foo(Param :Integer; Param2:Integer);

A continuation line should never start with a binary operator.[???] Avoid breaking a line where

normally no white space appears, such as between a method name and its opening

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 9/18

parenthesis, or between an array name and its opening square bracket. If you must break

under these circumstances, then one viable place to begin is after the opening parenthesis

that follows a method name. Never place a begin statement on the same line with any other

code.

Examples:

// INCORRECT

while (LongExpression1 or LongExpression2) do begin

 // DoSomething

 // DoSomethingElse;

end;

// CORRECT

while (LongExpression1 or LongExpression2) do

begin

 // DoSomething

 // DoSomethingElse;

end;

// CORRECT

if (LongExpression1) or

 (LongExpression2) or

 (LongExpression3) then

5.0 Comments
The Object Pascal language supports two kinds of comments: block, and single-line comments.

Some general guidelines for comment usage include:

It is helpful to place comments near the top of unit to explain its purpose.

It is helpful to place comments before a class declaration.

It is helpful to place comments before some method declarations.

Avoid making obvious comments:

i := i + 1; // Add one to i

Remember that misleading comments are worse than no comments at all.

Avoid putting any information into comments that is likely to become out of date.

Avoid enclosing comments in boxes drawn with asterisks or other special typography.

Temporary comments that are expected to be changed or removed later should be

marked with the special tag "???:" so that they can easily be found afterwards. Ideally,

all temporary comments should have been removed by the time a program is ready to be

shipped.

Example:

// ???: Change this to call Sort when it is fixed

List.MySort;

5.1 Block Comments

Object Pascal supports two types of block comments. The most commonly used block

comment is a pair of curly braces: { }. The Delphi team prefers to keep comments of this type

as spare and simple as possible. For instance, you should avoid using asterisks to create

patterns or lines inside your comments. Instead, make use of white space to break your

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 10/18

comments up, much as you would in a word processing document. The words in your

comments should start on the same line as the first curly brace, as shown in this excerpt from

DsgnIntf.pas:

{ TPropertyEditor

 Edits a property of a component, or list of components,

 selected into the Object Inspector. The property

 editor is created based on the type of the

 property being edited as determined by the types

 registered by...

 etc...

 GetXxxValue

 Gets the value of the first property in the

 Properties property. Calls the appropriate

 TProperty GetXxxValue method to retrieve the

 value.

 SetXxxValue Sets the value of all the properties

 in the Properties property. Calls the appropriate

 TProperty SetXxxxValue methods to set the value. }

A block comment is always used for the copyright/ID comment at the beginning of each

source file. It is also used to "comment out" several lines of code.

Block comments used to describe a method should appear before the method declaration.

Example:

// CORRECT

{ TMyObject.MyMethod

 This routine allows you to execute code. }

procedure TMyObject.MyMethod;

begin

end;

// INCORRECT

procedure TMyObject.MyMethod;

{**

 TMyObject.MyMethod

 This routine allows you to execute code.

***}

begin

end;

A second kind of block comment contains two characters, a parenthesis and an asterisk: (*

*). This is sometimes called starparen comments. These comments are generally useful only

during code development, as their primary benefit is that they allow nesting of comments, as

long as the nest level is less than 2. Object Pascal doesn't support nesting comments of the

same type within each other, so really there is only one level of comment nesting: curly inside

of starparen, and starparen inside of curly. As long as you don't nest them, any other

standard Pascal comments between comments of this type will be ignored. As a result, you

can use this syntax to comment out a large chunk of code that is full of mixed code and

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 11/18

comments:

(* procedure TForm1.Button1Click(Sender: TObject);

begin

 DoThis; // Start the process

 DoThat; // Continue iteration

 { We need a way to report errors here, perhaps using

 a try finally block ??? }

 CallMoreCode; // Finalize the process

end; *)

In this example, the entire Button1Click method is commented out, including any of the

subcomments found between the procedure's begin..end pair.

5.2 Single-Line Comments

A single-line comment consists of the characters // followed by text. Include a single space

between the // and the comment itself. Place single line comments at the same indentation

level as the code that follows it. You can group single-line comments to form a larger

comment.

A single-line comment or comment group should always be preceded by a blank line, unless it

is the first line in a block. If the comment applies to a group of several statements, then the

comment or comment group should also be followed by a blank line. If it applies only to the

next statement (which may be a compound statement), then do not follow it with a blank line.

Example:

// Open the database

Table1.Open;

Single-line comments can also follow the code they reference. These comments, sometimes

referred to as trailing comments, appear on the same line as the code they describe. They

should have at least one space-character separating them from the code they reference. If

more than one trailing comment appears in a block of code, they should all be aligned to the

same column.

Example:

if (not IsVisible) then

 Exit; // nothing to do

Inc(StrLength); // reserve space for null terminator

Avoid commenting every line of executable code with a trailing comment. It is usually best to

limit the comments inside the begin..end pair of a method or function to a bare minimum.

Longer comments can appear in a block comment before the method or function declaration.

Classes

6.1 Class Body Organization

The body of a class declaration should be organized in the following order:

Field declarations

Method declarations

Property declarations

The fields, properties and methods in your class should be arranged alphabetically by name.

6.1.1 Access levels
Except for code inserted by the IDE, the scoping directives for a class should be declared in

the following order:

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 12/18

Private declarations

Protected declarations

Public declarations

Published declarations

There are four access levels for class members in Object Pascal: published, public, protected,

and private -- in order of decreasing accessibility. By default, the access level is published. In

general, a member should be given the lowest access level which is appropriate for the

member. For example, a member which is only accessed by classes in the same unit should be

set to private access. Also, declaring a lower access level will often give the compiler

increased opportunities for optimization. On the other hand, use of private makes it difficult to

extend the class by sub-classing. If there is reason to believe the class might be sub-classed

in the future, then members that might be needed by sub-classes should be declared

protected instead of private, and the properties used to access private data should be given

protected status.

You should never allow public access to data. Data should always be declared in the private

section, and any public access should be via getter and setter methods, or properties.

6.1.8 Constructor declarations
Methods should be arranged alphabetically. It is correct either to place your constructors and

destructors at the head of this list in the public section, or to arrange them in alphabetical

order within the public section.

If there is more than one constructor, and if you choose to give them all the same name, then

sort them lexically by formal parameter list, with constructors having more parameters always

coming after those with fewer parameters. This implies that a constructor with no arguments

(if it exists) is always the first one. For greatest compatibility with C++Builder, try to make the

parameter lists of your constructors unique. C++ cannot call constructors by name, so the

only way to distinguish between multiple constructors is by parameter list.

6.2 Method Declarations

If possible, a method declaration should appear on one line.

Examples:

// Broken line is aligned two spaces in from left.

procedure ImageUpdate(Image img, infoflags: Integer,

 x: Integer, y: Integer, w: Integer, h: Integer)

Interfaces
Interfaces are declared in a manner that runs parallel to the declaration for classes:

InterfaceName = interface([Inherited Interface])

 InterfaceBody

end;

An interface declaration should be indented two spaces. The body of the interface is indented

by the standard indentation of four spaces. The closing end statement should also be

indented two characters. There should be a semi-colon following the closing end statement.

There are no fields in an interface declaration. Properties, however, are allowed.

All interface methods are inherently public and abstract; do not explicitly include these

keywords in the declaration of an interface method.

Except as otherwise noted, interface declarations follow the same style guidelines as classes.

7.1 Interface Body Organization

The body of an interface declaration should be organized in the following order:

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 13/18

Interface method declarations

Interface property declarations

The declaration styles of interface properties and methods are identical to the styles for class

properties and methods.

8.0 Statements
Statements are one or more lines of code followed by a semicolon. Simple statements have

one semicolon, while compound statements have more than one semicolon and therefore

consist of multiple simple statements.

Here is a simple statement:

A := B;

Here is a compound, or structured, statement:

begin

 B := C;

 A := B;

end;

8.0.1 Simple Statements
A simple statement contains a single semicolon. If you need to wrap the statement, indent the

second line two spaces in from the previous line:

 MyValue :=

 MyValue + (SomeVeryLongStatement / OtherLongStatement);

8.0.1 Compound Statements
Compound Statements always end with a semicolon, unless they immediately precede an end

statement, in which case the semicolon is optional.

begin

 MyStatement;

 MyNextStatement;

 MyLastStatement // semicolon optional

end;

8.1.1 Assignment and expression statements
Each line should contain at most one statement. For example:

a := b + c; Inc(Count); // INCORRECT

a := b + c; // CORRECT

Inc(Count); // CORRECT

8.1.2 Local variable declarations
Local variables should have Camel Caps, that is, they should start with a capital letter, and

have capital letters for the beginning of each embedded word. Do not preface variable names

with an F, as that convention is reserved for Fields in a class declaration:

var

 MyData: Integer;

 MyString: string;

You may declare multiple identifiers of the same type on a single line:

var

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 14/18

 ArraySize, ArrayCount: Integer;

This practice is discouraged in class declarations. There you should place each field on a

separate line, along with its type.

8.1.3 Array declarations
There should always be a space before the opening bracket "[" and after the closing bracket.

type

 TMyArray = array [0..100] of Char;

8.2.3 if statement
If statements should always appear on at least two lines.

Example:

 // INCORRECT

 if A < B then DoSomething;

 // CORRECT

 if A < B then

 DoSomething;

In compound if statements, put each element separating statements on a new line:

Example:

 // INCORRECT

 if A < B then begin

 DoSomething;

 DoSomethingElse;

 end else begin

 DoThis;

 DoThat;

 end;

 // CORRECT

 if A < B then

 begin

 DoSomething;

 DoSomethingElse;

 end

 else

 begin

 DoThis;

 DoThat;

 end;

Here are a few more variations that are considered valid:

 // CORRECT

 if Condition then

 begin

 DoThis;

 end else

 begin

 DoThat;

 end;

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 15/18

 // CORRECT

 if Condition then

 begin

 DoThis;

 end

 else

 DoSomething;

 // CORRECT

 if Condition then

 begin

 DoThis;

 end else

 DoSomething;

One that has fallen out of favor but deserves honorable mention:

 if Condition then

 DoThis

 else DoThat;

8.2.4 for statement
Example:

 // INCORRECT

 for i := 0 to 10 do begin

 DoSomething;

 DoSomethingElse;

 end;

 // CORRECT

 for i := 0 to 10 do

 begin

 DoSomething;

 DoSomethingElse;

 end;

8.2.5 while statement
Example:

 // INCORRECT

 while x < j do begin

 DoSomething;

 DoSomethingElse;

 end;

 // CORRECT

 while x < j do

 begin

 DoSomething;

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 16/18

 DoSomethingElse;

 end;

8.2.6 repeat until statement
Example:

 // CORRECT

 repeat

 x := j;

 j := UpdateValue;

 until j > 25;

8.2.7 case statement
Example:

 // CORRECT

 case Control.Align of

 alLeft, alNone: NewRange := Max(NewRange, Position);

 alRight: Inc(AlignMargin, Control.Width);

 end;

 // CORRECT

 case x of

 csStart:

 begin

 j := UpdateValue;

 end;

 csBegin: x := j;

 csTimeOut:

 begin

 j := x;

 x := UpdateValue;

 end;

 end;

 // CORRECT

 case ScrollCode of

 SB_LINEUP, SB_LINEDOWN:

 begin

 Incr := FIncrement div FLineDiv;

 FinalIncr := FIncrement mod FLineDiv;

 Count := FLineDiv;

 end;

 SB_PAGEUP, SB_PAGEDOWN:

 begin

 Incr := FPageIncrement;

 FinalIncr := Incr mod FPageDiv;

 Incr := Incr div FPageDiv;

 Count := FPageDiv;

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 17/18

 end;

 else

 Count := 0;

 Incr := 0;

 FinalIncr := 0;

 end;

8.2.8 try statement
Example:

 // Correct

 try

 try

 EnumThreadWindows(CurrentThreadID, @Disable, 0);

 Result := TaskWindowList;

 except

 EnableTaskWindows(TaskWindowList);

 raise;

 end;

 finally

 TaskWindowList := SaveWindowList;

 TaskActiveWindow := SaveActiveWindow;

 end;

Published on: 1/1/1999 12:00:00 AM

Server Response from: SC4

Copyright© 1994 - 2009 Embarcadero Technologies, Inc. All rights reserved.

22/02/2010 Object Pascal Style Guide

edn.embarcadero.com/print/10280 18/18

