
Verbesserung von

Softwarequalität in Delphi

Jeroen Pluimers
Edwin van der Kraan

jpluimers@better-office.com

evdkraan@better-office.com

better office benelux

Welcome

•Target of this course

•better office benelux

Why Software Quality ?

•Software is getting more and more
important in all aspects of (human)
life,
so failures have a big impact

•All serious applications need
modifications in due time, software
life-cycles are not predictable

•Quality reduces stress

How can you study

Software Quality ?

•Books and articles have been written

– Increases your insight

– Stimulates good practices

– Enables you to argue about a decision

• .. But that is not the emotional side

• Building quality software depends on your
passion for

– developing the right way and

– do it right the first time.

Software Quality:

the human factor

•<images>

–Group of people with communication

–Draw right and left handed

–Emotion versus Technique

RAD

‘Developing software faster

than you do now’

Steve McConnell

What is RAD and what

does it have to do with Quality ?
• RAD = Rapid Application Development

– Not just for the first phase

• Doing it right the first time helps a lot

• Low-effort, high-payoff techniques

• Decisions like
– Make or buy

– Reuse

• But:
– there is no silver bullet

Low-effort / High-payoff techniques

•Aim to find
– low-effort techniques,

– principles and guidelines that have a high
payoff

•For instance:
– improving the quality of methods and
comments can
greatly ease the task of creating
documentation
(‘the asterisk problem’)

Upstream / downstream

•Where did you introduce that bug ?

–Create processes that help you to find

bugs as soon as possible

–Fix the bug when it’s found
– http://se.uwaterloo.ca/>dberry/COURSES/software.engr/lectures.pdf/inspect.pdf

0000

50505050

100100100100

150150150150

200200200200

req'sreq'sreq'sreq's designdesigndesigndesign codecodecodecode dev-testdev-testdev-testdev-test acceptanceacceptanceacceptanceacceptance productionproductionproductionproduction

PhasePhasePhasePhase

Frameworks

•Delphi is a fabulous general-purpose
development tool.

•But it gives the average developer too
much freedom and too many choices
that have to be made thoughtfully.

•The consequences are:

– stress

–wrong decisions

– repetitive and boring work

Frameworks

•Set of

•Components, objects, routines

•Guidelines

•Documentation templates

•Tools

–that lays on top of the development-

tool with the aim to standardize and

speed-up software construction.

What do you need for quality ?

•You need a framework for rapidly

developing quality Delphi

applications

•The design of your framework

should be based on principles that

are key to quality

Key Principles

…in a platform/language

agnostic way

Break up your sourcecode !

•Gains:

–Focus attention and energy

–Decrease complexity for the developer

–Increase (conceptual) overview

–Information Hiding

–Localise changes

Cohesion

•“The act or condition of sticking

together; a tendency to cohere; the

force with which molecules cohere”

•Strong cohesion is good;

weak cohesion is bad

•It should be basically impossible to

seperate the parts within a ‘unit’

Coupling

•“A link connecting railway carriages etc.;

a connection between two systems”

•Loose coupling is good;

tight coupling is bad

•A communication-path should be as less

specific as possible (no knowledge of

internals of the other unit)

Interfaces

•“A surface forming a common

boundary between two regions; a

point where interaction occurs

between systems”

•Interfaces should be defined and

documented formally

Indirection

•“Not going straight to the point”

•Indirection is very good;

up to a certain point

•Indirection gives you more control

over communication in a centralized

location

Indirection

Private Variable

Client

read write

Property

read write

Simplify

•“Make simple; make easy or easier
to do or understand”

•Simplification is good

•Make your application and
especially the structure of the
application as simple as possible

•Low-tech is more maintainable than
high-tech

Create Documentation

•“The most important part of design that

gets started when the application is

almost finished and often is done by

handwritten notes in a scrapbook”

•Documentation should be done right the

first time

•Create guidelines and templates

for Word and source-code

Create Documentation

•Source code is often the only

accurate description of the software.

So make sure it is readable and of

the highest quality.

Use OOP wisely

•Abstraction

• Encapsulation

• Inheritance

– Multiple Class Inheritance is not such a good idea

•Polymorphism

– (Multiple) interface implementation is a good idea

•When used properly, OOP can increase
quality, but if not it will make things very bad

Delphi

some key principles in more

detail…

Self-documenting code

•The only part of the software that is

guaranteed to be done is the code!

•So create self-documenting code

–Variable and method names

–Proper layout

Comments

•A comment can be

–Repeat of the code

–Explanation of the code

–Marker in the code

–Summary of the code

–Description of the code’s intent

Comments

• Make writing comments as smooth as possible

– Layout

• No special formatting (VCL unit headers are a dork!)

• No endline // comments, except for declarations

– PDL-to-code (Program Design Language)

• Start with some comments on the ‘what’

• Then replace them with the ‘how’

– Comment as you go

– Avoid excessive commenting

Comments

•Make every comment count

–Do not comment for silly purposes

–Document surprises and workarounds

–Avoid abbrvtns

‘Don’t document bad code -- rewrite it’
Kernighan and Plauger (1978)

Constructing readable sourcecode

•Sourcecode Layout

–Consistency is important

–Editor options:

–Quality layout matches

the logical structure of the code

Constructing readable sourcecode

•Sourcecode should be formatted for
the human reader, not the computer

–Accurately represent the logical
structure

–Consistently represent the logical
structure

–Improve Readability

–Withstand modifications

Constructing readable sourcecode

•Use whitespace
–Grouping

–Blank lines

–Make logical expressions readable

•Alignment
–Groups of related assignments

–Data declarations

•Indentation (2 - 4 spaces is best)

•Use more parentheses

Constructing readable sourcecode

•Indentation styles
http://courses.knox.edu/cs322/322PDFLectures/L16Coding.pdf

– Pure blocks are not an option in pascal

– Endline layout is horrible

– Emulated pure blocks

– Begin-end block boundaries

ifififif (i > 10) thenthenthenthen
statement1;
statement2;

endendendend;
ifififif (i > 1000) then beginthen beginthen beginthen begin

x := 21;
y := 36;

endendendend
else else else else z := 15;

Constructing readable sourcecode

•Do not use lines longer than

the screen width

(80/100/… characters)

•Layout comments with their

corresponding code

•Use paragraphs

–White space is important!

Use assertions

•Document pre- and post-conditions

using comments,

especially if they are not obvious

•Check for pre- and post-conditions

using the Assert keyword
Assert(Count > 10,

'not enough records');

Use Assertions

• procedureprocedureprocedureprocedure Assert
(

expr : Boolean
[; const msg: string]

);

•Raises
– EAssertionFailed

•Project Options | Compiler

Exception handling

•Try…Finally

•Try…Except

•Global Exception Handler

–in message loop of TApplication

•TApplicationHandler

Implementation, Interface

•Declarations in interface can be

seen outside that unit

•The interface section cannot contain

statements (executable code)

•Variables declared in the interface

section are globals: don’t use them

Classes and access-modifiers

• private
– available only in that class and that unit

• protected
– private + available in subclasses

• public
– available to anyone who USES that unit

• published
– Runtime Type Information (RTTI) is generated. The Object
Inspector needs RTTI to show properties and events.

• strict private / strict protected
– Since Delphi 2005:
Like private / protected, but excludes the unit

Interfaces and Classes

•Classes implementing interfaces is another
form of Polymorphism
– Some call it the “true polymorphism”…

•Be aware of reference counting
http://wiert.wordpress.com/2009/08/20/delphi-tinterfaceddatamodule-revisted-
inherited-in-your-dfm-files-when-your-datamodules-look-like-forms-in-the-designer/

•Some notes
– The .NET framework relies heavily on Interfaces

– The VCL framework not, because of backward
compatibility

– But you are free to do your own!

Properties

•Learn to create properties, also in forms

and datamodules

•Use Set- and Get-methods where

appropriate

•Ctrl-Shift-C can be a great help

•Using ModelMaker Code Explorer helps

even more

–www.modelmakertools.com/code-explorer

Events

• An event is a property of datatype ‘method-pointer’
typetypetypetype
TNotifyEvent = procedureprocedureprocedureprocedure (Sender: TObject) ofofofof objectobjectobjectobject;

– It contains two pointers
• To an object instance

• To a method

• You can assign events at runtime
MyForm.Button1.Click := MyForm.Button3Click;

• Events are a terrific way to decouple units
(two-way communication with a one-way USES
clause)

• Delphi unfortunately has a single-cast event
handling system

Datamodules

•Datamodules is not about data

– They are about “non-visual”

•Use datamodules for all situations,
where you want to

– easily use Delphi components,

– adapt properties in design-time,

– create events in design-time

– do not need user-interface

TActionList / TActionManager

•Use TActionLists to separate application
code from the User Interface

•TActionLists allow you to bring events
from the form to the datamodule

•And they centralize some UI-properties
(is this good?)

•They have some quirks, so make sure
you try before you use them

TFrame and Visual Form Inheritance

•Visual Form Inheritance and
TFrames and are not always good
for maintenance:

–you can (too) easily change
‘descendants’

•It is better to create your own
“SuperComponents”, for instance
based on TFrame

Build your own components

•“Component Templates” are good

for

copy-paste, don’t use them as a

replacement for components

Build your own components

•Creating your own components can

–Dramatically speed up development

–Make your applications behave and

feel much more consistent

–Reduce maintenance, because of one

central code-location

Code generation

•Makes maintenance more difficult most

of the time, because of code-duplication

•This can be made better when the

generator

– supports round-trip engineering (two-way)

– generates classes in a hierarchy

•TBaseXxxx (generated each time)

•TXxx (generated once)

Good programming

techniques

that work for any language or

platform

Think

•Study at SEL 1987 found that extensive

computer use (edit, compile, link, test) is

correlated with low productivity.

•Of course our tools have changed a lot.

•But still:

use your brain, not just your compiler !

Think

Write your code for the reader,

not for yourself.

Code defensively

•Always assume that

you or somebody else

is going to make mistakes

–Keep the code simple

–Anticipate problems

–Use assertions liberally

–Document difficult code

Coding: methods

1. Design the method

•Define
– Purpose

–Name

–How to test it

– Research re-use

•Write PDL (Program Design Language)

•Think about the data

•Check the PDL

•Iterate

2. Code the method

•Code

–Construct the declaration
(that’s the interface of the routine)

–Turn PDL into comments

–Fill in the code below each comment

–Check the code informally

–Clean up the leftovers

–Iterate

3. Check the method

•Check

–Mentally check the code for errors

–Compile the code

–Use the debugger to step through the

code

–Remove errors

–Iterate

Coding: Data

Creating data

•Use

–User defined types

–Classes

–TClientDatasets

Creating data

•Use a template to declare variables

•Document the meaning of variables

•Use naming conventions

–F* for private variables

•Remove unused declarations

var

Index: Integer; Index: Integer; Index: Integer; Index: Integer; // meaning of Index: better rename Index// meaning of Index: better rename Index// meaning of Index: better rename Index// meaning of Index: better rename Index

Creating data

•Initialize each variable close to
where it is used (not at the top of the
method)

Keep related actions together
Principle of proximity

Creating data

•Use the initialization-section to

initialize variables with a global

scope and lifetime.

Data names

•A Variable = Its Name

•Use good names
–Readable

–Memorable

–Appropriate

A variable should fully and accurately describe
the entity that the variable represents.

Data names

•Use obvious words

–‘LinesPerPage’ is much better than

‘LPP’

•Express the what, not the how

–‘PrinterIsReady’ instead of ‘BitFlag’

Data names

•Length

–Optimum: 10-16 characters

–Almost as good: 8-20 characters

•Use i, j or x only in a limited, local
scope

•But as soon as loops are nested,
use longer names

Data names

•Watch out with ‘temporary’ variables

– Temporary may indicate that you aren’t
sure of their real purposes

•Same with names like:

–Util/Utils

– Tool/Tools

–Misc

–Other

Data names

•Typical boolean names

–Done

– Error

– Found

– Success

•Boolean variables names should

– imply True / False (not: ‘Status’) and

– they should be positive (not: ‘NotFound’).

Data names

• Enumerated Types and Sets
– Use prefixes (or suffixes) to group values

• Often better than booleans
especially when used as parameters

procedureprocedureprocedureprocedure Paint(Value: stringstringstringstring; Background: Boolean = True)

Paint('Programming is fun!', False);

– Versus

type
TPaintBehaviour = (bhForegroundOnly, bhBackgroundAndForeground)

procedureprocedureprocedureprocedure Paint(Value: stringstringstringstring;
Behaviour: TPaintBehaviour = bhBackgroundAndForeground)

Paint('Programming is fun!', bhForegroundOnly);

Data names

•Constants

–Variables Don't; Constants Aren't

•Don’t use capitals and underscores

•Name them like data

• http://en.wikipedia.org/wiki/Constant_(programming)

Data names: abbreviations

• In general:

– Don’t

• If you have to:

– Do not remove just one characte from a word

– Abbreviate consistently

– Create names that you can pronounce

– Avoid combinations that result in mispronounciation

– Use a thesaurus

– Document short names with translation tables

Data names: abbreviations

• Avoid

– misleading names or abbreviations

– names with similar meanings

– variables with different meanings but similar names

– Names that sound similar or can be pronounced obscene

• Uranus

– Numerals in names

• ForWeddingsAndAFuneral

Data names: abbreviations

•Avoid
–Mispelled words in names

–Words that are commonly mispelled

–Names of standard routines and variables

–Names that are totally unrelated to what
they represent

–Names that contain hard-to-read
characters
(‘confusion’ vs. ‘c0nfusion’)

Naming Conventions

•Global decisions

•Transfer knowledge

•Reduce name proliferation

• http://stackoverflow.com/questions/262892/what-
delphi-coding-standards-documents-do-you-follow

– Embarcadero/CodeGear/Borland standard

– JCL/JVCL standard

– Econos standard

Naming Conventions

• Identify type definitions (‘T’, ‘E’)

• Identify fields (‘F’)

• Format names to enhance readability
(not “GYMNASTICSPOINTTOTAL”)

•Optionally:

– Identify global and module variables
(‘g_’ and ‘m_’)

•Better:

– Do not use globals at all:

– Use class variables in stead.

Naming Conventions

•Some use Hungarian

–Base types

(wn [Window], ch [character]…)

–Prefixes

(a [array], c [count]…)

–Standard Qualifiers

(Min, First, Last…)

Variables: general issues

•Scope
– Minimize scope

– Keep references to a variable together

•Binding
– Use late binding for the contents of variables

•Code-time A := 47;

•Compile-time A := NumberOfBars;

•Run-time A := GetNumOfBarsFromIniFile ();

Variables: general issues

•Use

–Use each variable for exactly one

purpose

•One purpose only

•Avoid hidden meanings (1..100, -1)

•Use all declared variables

Variables: general issues

•Problems with globals

–Inadvertent changes to global data

–Aliasing problems with global data

–Thread conflicts

–Code reuse hindered by global data

–Modularity and intellectual

manageability damaged by global

data

Variables: general issues

•Instead of globals

–Create access routines

–Create a global variable that contains

an object with properties

(Application : TApplication in

Forms.pas)

–Use class variables

Fundamental Data Types

• Avoid ‘magic numbers’ and ‘magic strings’, use
constants instead

• The use of 0 (zero) and 1 (one) is allowed

• Make type-conversions obvious
– Use a type-cast or

– Use a conversion

• Avoid mixed-type comparisons
and floating point comparisons

if (Pi = 3) then // bad for 2 reasons

• Heed your compiler’s warnings
– The compiler is almost always right

Coding: Control statements

Using conditionals

ifififif (x) thenthenthenthen

beginbeginbeginbegin

//

endendendend

elseelseelseelse

beginbeginbeginbegin

//

endendendend;

Using conditionals

•Let the nominal path through the

code not be obscured by the

exceptions

•Put the normal case after the if

Using conditionals

• Follow the if-clause with a meaningful statement

• Use >= etc. correctly: think through the endpoints
ifififif notnotnotnot (a >= 10)
ifififif (a < 10)

• Consider the else clause and
maybe even create one to document that the else
clause was considered:

if (FailureCondition) then
HandleFailure()

else
; // no need to handle success

• Check for the flip-flop error

Controlling loops

•Select the right kind of loop

– FOR…NEXT

– FOR…IN

–WHILE…DO test at begin of loop

–REPEAT…UNTIL test at end of loop;

runs at least once

Controlling loops

• Initialize variables directly before the loop

•Do variable housekeeping for the loop at the
beginning or end of the loop

•Make each loop perform only one function

•Assure yourself that the loop ends

•Make termination conditions obvious

•Don’t monkey with the loop index (i)

• The loop index is undefined after exiting the
loop!

Controlling loops

•Avoid

–CONTINUE

–BREAK

–EXIT

•Use if-statements instead

Controlling loops

•Make your loops short enough to

view all code at once

•Limit nesting to three levels

•Make long loops especially clear

Unusual Control structures

•Goto

•Recursion

–Make sure it stops

(use safety counter during debug/test)

–Limit to one routine (not: A > B > C)

–Keep an eye on the stack

General Control structures

•Booleans

–Make complicated tests simple:
break them in parts or use functions

–Form boolean expressions positively

•if not Failure

•if not NoSuccess

•if Success

–Use parentheses

General Control structures

•Compound statements

(begin/end blocks)

–Use them instead of single statements

–Do not nest too deeply

•Retest some of the conditions

•Use if…then…else

•Use a CASE statement

•Construct new methods

•Redesign deeply nested code

Modularizing data layers

Cohesion, coupling, interfaces, indirection,
simplify

All in one example

Delphi – Modularization

•Average Delphi app unit structure

Main Form
Customer

Form

Customer

Data

Module

Order

Form

Order

Data

Module

Database

Data

Module

Delphi – Modularization

•Good Delphi app unit structure

Main Form
Customer

Form

Customer

Data

Module

Order

Form

Order

Data

Module

Database

Data

Module

How come good is better than bad?

•Look for modularization in real life…

–Houses - rooms

–Cities - suburbs/blocks

– People - digestion system

–Parliament - parties

•Sometimes modularization works

•Sometimes it doesn’t ☺

Modules are everywhere…

•So why does it work?

–Internal Cohesion HIGH

–External Coupling LOW

•If also ‘uniform’: great!

•If also ‘directional’: even better!

Modularization – database apps

•Let’s apply this knowledge

to our database apps

•Especially: where to put the

DataSource…

•Where is your DataSource?

Modularization – DataSource

Bad 3 Internal Links

6 External Links

Good 6+2 Internal

2 External

Modularization – the datasource

•DataSource has two goals

•Binding GUI controls

•Providing Master-Detail relations

–GUI binding:

put DataSource on Form

–MD-relations:

put DataSource on DataModule

Modularization – gain

•Flexibility

–Change of GUI

–Change of Data Access

–Re-use of modules across projects

Know your VCL

Delphi 5 Object Hierarchy.pdf

Delphi 7 - VCLHierarchyPoster.pdf

Know new features

for … in

Generics

Anonymous methods

for … in

•for Win32, it was introduced

in D2005

–On lots of built-in data types

•Arrays

•Strings

–On many data types

•Lists, Collections, Trees,

•Components, Actions, Menus, Fields,

•many, many more …

Data types supporting for … in

– These data types
•provide either of these:

–functionfunctionfunctionfunction GetEnumerator: T…Enumerator;
–functionfunctionfunctionfunction GetEnumerator: IEnumerator;

•and the result provides these functions:
–constructorconstructorconstructorconstructor Create(

constconstconstconst AObject: T…Object);
–functionfunctionfunctionfunction GetCurrent: T…;
–functionfunctionfunctionfunction MoveNext: Boolean;
–propertypropertypropertyproperty Current: T… readreadreadread GetCurrent;

– The compiler then recognizes it supports
for … in

Business logic versus glue…

procedureprocedureprocedureprocedure TXokumDataModule.GetMinMaxAbonneeNummerOldStyle(
varvarvarvar MinAbonneenummer: Integer;
varvarvarvar MaxAbonneeNummer: Integer);

varvarvarvar
WasActive: Boolean;

beginbeginbeginbegin
MinAbonneenummer := High(Integer);
MaxAbonneeNummer := Low(Integer);
WasActive := XokumClientDataSet.Active;
XokumClientDataSet.Open;
XokumClientDataSet.First;
whilewhilewhilewhile notnotnotnot XokumClientDataSet.Eof dodododo
beginbeginbeginbegin
ifififif XokumClientDataSetabonneenummer.Value > MaxAbonneeNummer thenthenthenthen
MaxAbonneeNummer := XokumClientDataSetabonneenummer.Value;

ifififif XokumClientDataSetabonneenummer.Value < MinAbonneeNummer thenthenthenthen
MinAbonneeNummer := XokumClientDataSetabonneenummer.Value;

XokumClientDataSet.Next;
endendendend;
ifififif notnotnotnot WasActive thenthenthenthen
XokumClientDataSet.Close;

endendendend;

Wouldn’t it be nice to…

procedureprocedureprocedureprocedure TXokumDataModule.GetMinMaxAbonneeNummer(
varvarvarvar MinAbonneenummer: Integer;
varvarvarvar MaxAbonneeNummer: Integer);

varvarvarvar
Index: TDataSetEnumerationRecord;

beginbeginbeginbegin
MinAbonneenummer := High(Integer);
MaxAbonneeNummer := Low(Integer);
forforforfor Index inininin XokumClientDataSet dodododo
beginbeginbeginbegin
ifififif XokumClientDataSetabonneenummer.Value > MaxAbonneeNummer thenthenthenthen
MaxAbonneeNummer := XokumClientDataSetabonneenummer.Value;

ifififif XokumClientDataSetabonneenummer.Value < MinAbonneeNummer thenthenthenthen
MinAbonneeNummer := XokumClientDataSetabonneenummer.Value;

endendendend;
endendendend;

Helpers

• Introduced in Delphi to support .NET

– The .NET class hierarchy differs from Win32 VCL

In the .NET framework, VCL methods and
properties were different or missing

•Helpers can make extensions at function level

– Yes: methods and properties

– No: instance data

• They also work in Delphi for Win32:

– Class helpers since Delphi 2005

– Record helpers since Delphi 2006

Helpers

•Helpers (class or record):

–function as long as the helper is visible

to the user

•So:

–Helper in the same unit,

–or helper in a unit in the uses list

Generics

•Great document:
ftp://ftp-
developpez.com/sjrd/tutoriels/delphi-
generics/delphi-generics.pdf

• Basically:
typetypetypetype
TList<T> = classclassclassclass(…)

varvarvarvar
MyIntegerList = TList<Integer>;
MyStringList = TList<stringTList<stringTList<stringTList<string>;

• Lots of examples:
– see demo later on

Anonymous methods

•Inline block of code

•Like a regular method

•With parameters

•Optional function result

•But without a name
• http://stackoverflow.com/questions/256146/can-someone-

explain-anonymous-methods-to-me

http://blogs.embarcadero.com/abauer/2008/09/25/38870

Anonymous example

class procedure class procedure class procedure class procedure TScreenSupport.ExecuteWithWaitCursor(const const const const Proc: TProc);
varvarvarvar
OldCursor: TCursor;

beginbeginbeginbegin
OldCursor := Screen.Cursor;
trytrytrytry
Screen.Cursor := crHourGlass;
Proc();

finallyfinallyfinallyfinally
Screen.Cursor := OldCursor;

endendendend;
endendendend;

procedureprocedureprocedureprocedure TMyForm.Button1Click(Sender: TObject);
beginbeginbeginbegin
TScreenSupport.ExecuteWithWaitCursor(
procedureprocedureprocedureprocedure
beginbeginbeginbegin
TExcelSupport.Export(OverzichtEnsembleStringGrid);

endendendend
);

endendendend;

Code Refactoring

Testing

http://stackoverflow.com/questi
ons/540617/best-way-to-test-a-

delphi-application

Testing

•Makes you find bugs faster

•Helps “Fix the bug when it’s found”

•Makes your total process cheaper

–Prepare to move some budget from

“maintenance” to “development” cycle

Source testing

•By humans only:

–Pair programming

(immediate feedback)

–Peer review

(feedback at a later time,

for instance right before checkin)

Continuous integration

• Build all your targets
– By hand once every while

– On each checkin, automagically

• Helps find the “colleague A modifies X, but it now
breaks at colleague B in application Y” sooner

• Tools:
– Makefiles

– FinalBuilder

– CruiseControl

Unit testing

•Comes from eXtreme Programming

and Agile Programming

•Tests methods of classes

•Built-in Delphi since Delphi 2005

UI testing

•Use TestComplete from

AutomatedQA

•Good, not cheap (USD 999-1999)

General guidelines

•Develop more, smaller routines

•Reduce the number of globals

•Improve your programming style

•Manage changes

•Review code changes

•Retest

Constructing new methods

•Reduce complexity

–by shortening

–by reducing nesting

•Share code

Code Tuning Issues

•Delivering on-time, on-budget

•Providing a clean user-interface

•Avoiding downtime

•Constructing maintainable code

…may be more important to the user than

raw speed

Old Wives’ Tales

• Reducing the lines of code improves the size or
speed of the executable
– false

• Certain operations are probably faster or smaller
than others
– false

• You should optimize as you go
– false

“You can get 80 percent of the result
with 20 percent of the effort”

The Pareto Principle

Strategies

•Use a profiler
– http://stackoverflow.com/questions/368938/delphi-
profiling-tools

–AQTime

–ProDelphi

–SamplingProfiler

•Use the compiler optimizations

•Use iteration

Where’s the fat ?

• Database / Network traffic

• Other Input/output operations

• User interaction

• Speed in decreasing order
– Network

– USB

– Hard drive

– Memory

All programming is an exercise in caching

Terje Mathisen

Techniques

1. Use a good modular design

2. Measure the system, if performance is poor

3. Determine the reasons for slow speed

4. Tune the bottleneck, if there is one

5. Iterate

Wrap-it-up

Share information

•Make the targets visible to everyone

on the team

•Store documentation in one central

place

•Always (!) document errors that you

found and the resolution to solve it

•Log bugs in one central place

Short Overview of Design Patterns

•Design Patterns is about

reusing approaches to problem-solving

•A Design Pattern consists of

– The pattern name

– The problem

– The solution

– The consequences

Ten essentials

for building good software
1. A product specification

2. A detailed user interface prototype

3. A realistic schedule

4. Explicit priorities

5. Active risk management

6. A quality assurance plan

7. Detailed activity lists

8. Software configuration management

9. Software architecture

10. An integration plan

from Steve McConnell

12 Classic Mistakes

1. Undermined motivation

2. Uncontrolled problem employees

3. Noisy, crowded offices

4. Abandoning planning under pressure

5. Shortchanging upstream activities

6. Shortchanging quality assurance

7. Lack of feature-creep control

8. Silver-bullet syndrome

9. Wasting time in the ‘fuzzy front end’

10. Insufficient user input

11. Overly aggressive schedules

12. Adding developers to a late project

from Steve McConnell

Sample projects

Demo time…

The good, the bad and the ugly

Tests

Belbin (xls) – the human factor

Joel – the team factor

Discussion time

Q & A

Jeroen Pluimers

better office benelux

jpluimers@better-office.com

If you have questions after the workshop, please mail me

my blog: http://wiert.wordpress.com

