22/02/2010 Econos - Coding Standard Document

Delphi 4 Developer's Guide Coding Standards Document

Copyright © 1998 Xavier Pacheco and Steve Teixeira

Modifications © 1998 Econos - Stefan Hoff meister
Version 1.1.0
29 September 1998
Republished w ith permission

The original, unmodified version of this document can be found at:

Delphi 4 Developer's Guide Homepage

Almost all of the content comes from the original document, created by Xavier Pacheco and Steve Teixeira. Only

a very limited set of changes has been applied to create this document.

Return to Delphi Information Resources

Introduction

General Source Code Formatting Rules

Indentation
Margins
Comments
Conditional Defines
Begin..End Pair

Object Pascal

Parenthesis
Reserved Words and Key Words
Procedures and Functions (Routines)
Naming / Formatting
Formal Parameters
Variables
Naming / Formatting
Declaring Variables
Local Variables
Global Variables
Types
Capitalization Convention
Floating Point Types
Enumerated Types
Variant and OleVariant
Structured Types

Array Types

Record Types
Statements

if Statements

case Statements

while Statements

for Statements

repeat statements

with Statements
Structured Exception Handling

General Topics

Use of try..finally

Use of try..except

http://www.econos.de/delphi/cs.html

1/25

22/02/2010 Econos - Coding Standard Document
Use of try..except..else
Classes
Naming / Formatting
Fields
Methods
Naming / Formatting
Use of Static Methods
Use of virtual / dynamic Methods
Use of Abstract Methods
Property Access Methods
Properties
Naming / Formatting
Use of Access Methods

Project Files
Form Files

Data Module Files
Remote Data Module Files
Unit Files
Unit Name
Uses Clauses
Interface Section
Implementation Section
Initialization Section
Finalization Section
Form Units Data Module Units
General Purpose Units
Component Units
File Headers

Forms and Data Modules

Forms

Form Type Naming Standard

Form Instance Naming Standard

Auto-creating Forms

Modal Form Instantiation Functions
Data Modules

Data Module Naming Standard

Data Module Instance Naming Standard

Packages

Use of Runtime vs Design Packages
File Naming Standards

Components

User-defined Components

Component Units

Use of Registration Units

Component Instance Naming Conventions

Component Prefixes
Standard Tab
Additional Tab
Win32 Tab
System Tab
Internet Tab
Data Access Tab
Data Controls Tab

http://www.econos.de/delphi/cs.html

2/25

22/02/2010 Econos - Coding Standard Document
Decision Cube Tab

QReport Tab
Dialogs Tab
Win31 Tab
Samples Tab
ActiveX Tab
Midas Tab

Introduction

This document describes the coding standards for Delphi programming as used in Delphi 4 Developers Guide. In
general, this document follows the often "unspoken" formatting guidelines used by Borland International with a few
minor exceptions. The purpose for including this document in Delphi 4 Developer's Guide is to present a method
by which development teams can enforce a consistent style to the coding that they do. The intent is to make it so
that every programmer on a team can understand the code being written by other programmers. This is
accomplished by making the code more readable by use of consistency.

This document by no means includes everything that might exist in a coding standard. However, it does contain
enough detail to get you started. Feel free to use and modify these standards to fit your needs. We don't
recommend, howewer, that you deviate too far from the standards used by Borland's development staff. We
recommend this because as you bring new programmers to your team, the standards that they are most likely to
be most familiar with are Borland's. Like most coding standards documents, this document will evolve as needed.
Therefore, you will find the most updated version online at http://www.xapware.com/ddg/. [Note: this applies to the
original, unmodified version of this document] This document does not cover user interface standards. This is a
separate but equally important topic. Enough third-party books and Microsoft documentation cover such
guidelines that we decided not to replicate this information but rather to refer you to the Microsoft Developers
Network and other sources where that information may be available.

Material changes applied to this document by Econos - Stefan Hoffmeister have been coloured in red. Material
changes are understood to be changes or additions to the original document, but not changes in the layout or in
the formatting of the original document.

General Source Code Formatting Rules

Indentation

Indenting will be two spaces per level. Do not save tab characters to source files. The reason for this is because
tab characters are expanded to different widths with different users settings and by different source management
utilities (print, archive, version control, etc.).

You can disable saving tab characters by turning off the "Use tab character" and "Optimal fill" check boxes on the
Editor page of the Environment Options dialog (accessed via Tools | Environment).

Margins
Margins will be set to 80 characters. In general, source shall not exceed this margin with the exception to finish a
word, but this guideline is somewhat flexible. Wherever possible, statements that extend beyond one line should

be wrapped after a comma or an operator. When a statement is wrapped, it should be indented so that logically
grouped segments are on the same level of indentation.

Comments
For commenting, usually { } pairs shall be used.

The alternative notation of (* *) shall be reserved for temporarily removing code ("commenting out") during

http://www.econos.de/delphi/cs.html 3/25

22/02/2010 Econos - Coding Standard Document
development.

The use of // shall be restricted to one-line comments.

Conditional Defines

Conditional defines shall be created with curly braces - "{", "}" - and with the conditional command in uppercase.

Each conditional define is named again in the closing block to enhance readability of the code.

They shall be indented in the same manner as blocks - for example

if ... then
begin
{$IFDEF VER90}
raise Exception.CreateRes (SError);
{SELSE}
raise Exception.Create (SError);
{SENDIF VER90}
end;

Begin..End Pair

The begin statement appears on its own line. For example, the following first line is incorrect; the second line is

correct:
for I := 0 to 10 do begin // Incorrect, begin on same line as for
for I := 0 to 10 do // Correct, begin appears on a separate line
begin

An exception to this rule can be made when the begin statement appears as part of an else clause - for example,

if some statement = ... then
begin

end

else begin
SomeOtherStatement;

end;

but the preferred way of writing this is

if some statement = ... then
begin

end

else

begin
SomeOtherStatement;

end;

http://www.econos.de/delphi/cs.html

4/25

22/02/2010 Econos - Coding Standard Document

so that the begin statement always appears indented on the same level as the corresponding if statement.
The end statement always appears on its own line.

When the begin statement is not part of an else clause, the corresponding end statement is always indented to
match its begin part.

Object Pascal

Parenthesis

There shall never be white space between an open parenthesis and the next character. Likewise, there shall never
be white space between a closed parenthesis and the previous character. The following example illustrates
incorrect and correct spacing with regard to parentheses:

CallProc(AParameter); // incorrect
CallProc (AParameter) ; // correct

Never include extraneous parentheses in a statement. Parentheses should only be used where required to
achieve the intended meaning in source code. The following examples illustrate incorrect and correct usage:

if (I
if (I

42) then // incorrect - extraneous parentheses
42) or (J = 42) then // correct - parentheses required

Reserved Words and Key Words

Object Pascal language reserved words and key words shall always be completely lowercase. By default, the
syntax high-lighting feature of the IDE will already print these words in bold face. You shall not use uppercase for
any of these words..

Procedures and Functions (Routines)
Naming / Formatting

Routine names shall always begin with a capital letter and be camel-capped for readability. The following is an
example of an incorrectly formatted procedure name:

procedure thisisapoorlyformattedroutinename;

This is an example of an appropriately capitalized routine name:

procedure ThisIsMuchMoreReadableRoutineName;

http://www.econos.de/delphi/cs.html 5/25

22/02/2010 Econos - Coding Standard Document
Routines shall be given names meaningful to their content. Routines that cause an action to occur will be prefixed
with the action verb, for example:

procedure FormatHardDrive;

Routines that set values of input parameters shall be prefixed with the word set - for example,

procedure SetUserName;

Routines that retrieve a value shall be prefixed with the word get - for example,

function GetUserName: string;

Formal Parameters
Formatting

Where possible, formal parameters of the same type shall be combined into one statement:

procedure Foo (Paraml, Param2, Param3: Integer; Paramé4: string);

Naming

All formal parameter names will be meaningful to their purpose and typically will be based off the name of the
identifier that was passed to the routine. When appropriate, parameter names will be prefixed with the character A
- for example,

procedure SomeProc (AUserName: string; AUserAge: integer);

The "A" prefix is a convention to disambiguate when the parameter name is the same as a property or field name
in the class.

Ordering of Parameters

The following formal parameter ordering emphasizes taking advantage of register calling conventions calls.

Most frequently used (by the caller) parameters shall be in the first parameter slots. Less frequently used
parameters shall be listed after that in left to right order.

Input lists shall exist before output lists in left to right order.

Place most generic parameters before most specific parameters in left to right order. For example:
SomeProc(APlanet, AContinent, ACountry, AState, ACity).

Exceptions to the ordering rule are possible, such as in the case of event handlers, when a parameter named
http://www.econos.de/delphi/cs.html 6/25

22/02/2010 Econos - Coding Standard Document
Sender of type TObject is often passed as the first parameter.

Constant Parameters

When parameters of record, array, ShortString, or interface type are unmodified by a routine, the formal
parameters for that routine shall mark the parameter as const. This ensures that the compiler will generate code
to pass these unmodified parameters in the most efficient manner.

Parameters of other types may optionally be marked as const if they are unmodified by a routine. Although this
will have no effect on efficiency, it provides more information about parameter use to the caller of the routine.

Name Collisions

When using two units that each contain a routine of the same name, the routine residing unit appearing last in the
uses clause will be invoked if you call that routine. To awid these uses-clause-dependent ambiguities, always
prefix such method calls with the intended unit name-for example,

SysUtils.FindClose (SR) ;

or

Windows.FindClose (Handle) ;

Variables
Variable Naming and Formatting

Variables will be given names meaningful to their purpose.

Loop control variables are generally given a single character name such as |, J, or K. It is acceptable to use a
more meaningful name as well such as Userlndex.

Boolean variable names must be descriptive enough so that their meanings of True and False values will be clear.

Declaring Variables

When declaring variable, there shall be no multiple declarations for one type. Each variable is assigned always
assigned a specific type - for example

var
i: Integer;
j: Integer;

It is acceptable to prefix each variable declaration with the var keyword - for example

var i: Integer;
var j: Integer;

http://www.econos.de/delphi/cs.html 7/25

22/02/2010 Econos - Coding Standard Document
Local Variables

Local variables used within procedures follow the same usage and naming conventions for all other variables.
Temporary variables will be named appropriately.

When necessary, initialization of local variables will occur immediately upon entry into the routine. Local
AnsiString variables are automatically initialized to an empty string, local interface and dispinterface type variables
are automatically initialized to nil, and local Variant and OleVariant type variables are automatically initialized to

Unassigned.

Use of Global Variables

Use of global variables is discouraged. However, they may be used when necessary. When this is the case, you
are encouraged to keep global variables within the context where they are used. For example, a global variable
may be global only within the scope of the a single unit's implementation section.

Global data that is intended to be used by a number of units shall be mowved into a common unit used by all.

Global data may be initialized with a value directly in the var section. Bear in mind that all global data is
automatically zero-initialized, so do not initialize global variables to "empty" values such as 0, nil, ", Unassigned,
and so on. One reason for this is because zero-initialized global data occupies no space in the exe file. Zero-
initialized data is stored in a \virtual' data segment that is allocated only in memory when the application starts up.
Non-zero initialized global data occupies space in the exe file on disk.

To explicitly document the assumption that global variables are zero-initialized, a comment to make this clear
should be added - for example

var
i: Integer { = 0 };

Types
Capitalization Convention

Type names that are reserved words shall be completely lowercase. Win32 API types are generally completely
uppercase, and you should follow the convention for a particular type name shown in the Windows.pas or other
API unit. For other variable names, the first letter shall be uppercase, and the rest shall be camel-capped for
clarity. Here are some examples:

var
MyString: string; // reserved word
WindowHandle: HWND; // Win32 API type
I: Integer; // type identifier introduced in System unit

Floating Point Types

Use of the Real type is discouraged because it exists only for backward compatibility with older Pascal code. Use
Double for general purpose floating point needs. Also, Double is what the processor instructions and busses are
optimized for and is an IEEE defined standard data format. Use Extended only when more range is required than
that offered by Double. Extended is an Intel specified type and not supported on Java. Use Single only when the
physical byte size of the floating point variable is significant (such as when using other-language DLLs).

Enumerated Types

Names for enumerated types must be meaningful to the purpose of the enumeration. The type name must be
http://www.econos.de/delphi/cs.html 8/25

22/02/2010 Econos - Coding Standard Document
prefixed with the T character to annotate it as a type declaration. The identifier list of the enumerated type must
contain a lowercase two to three character prefix that relates it to the original enumerated type name-for example,

TSongType = (stRock, stClassical, stCountry);

Variable instances of an enumerated type will be given the same name as the type without the T prefix
(SongType) unless there is a reason to give the variable a more specific name such as FaworiteSongType1,
FavoriteSongType2, and so on.

Variant and OleVariant

The use of the Variant and OleVariant types is discouraged in general, but these types are necessary for
programming when data types are known only at runtime, such as is often the case in COM and database
dewvelopment. Use OleVariant for COM-based programming such as Automation and ActiveX controls, and use
Variant for non-COM programming. The reason is that a Variant can store native Delphi strings efficiently (same
as a string var), but OleVariant converts all strings to Ole Strings (WideChar strings) and are not reference
counted-they are always copied.

Structured Types
Array Types
Names for array types must be meaningful to the purpose for the array. The type name must be prefixed with a T

character. If a pointer to the array type is declared, it must be prefixed with the character P and declared
immediately prior to the type declaration - for example,

type
PCycleArray = "TCycleArray;
TCycleArray = array[l..100] of Integer;

When practical, variable instances of the array type will be given the same name as the type name without the T
prefix.

Record Types

A record type shall be given a name meaningful to its purpose. The type declaration must be prefixed with the
character T. If a pointer to the record type is declared, it must be prefixed with the character P and declared
immediately prior to the type declaration. The type declaration for each element may optionally be aligned in a
column to the right - for example,

type
PEmployee = “TEmployee;
TEmployee = record

Name: string;
Rate: Double;
end;

Statements

if Statements

http://www.econos.de/delphi/cs.html 9/25

22/02/2010 Econos - Coding Standard Document
The most likely case to execute in an iffthen/else statement shall be placed in the then clause, with less likely
cases residing in the else clause(s).

Try to awoid chaining if statements and use case statements instead if at all possible.
Do not nest if statements more than five levels deep. Create a clearer approach to the code.
Do not use extraneous parentheses in an if statement.

If multiple conditions are being tested in an if statement, conditions should be arrange from left to right in order of
least to most computation intensive. This enables your code to take advantage of short-circuit Boolean evaluation
logic built into the compiler. For example, if Condition1 is faster than Condition2 and Condition2 is faster than
Condition3, then the if statement should be constructed as follows:

if Conditionl and Condition2 and Condition3 then

When multiple conditions are tested it, sometimes is advisable to have each condition on a line of its own. This is
particularly important in those cases, where one or more conditional statements are long. If this style is chosen,
the conditions are indented, so that they align to each other - for example

if Conditionl and
Condition2 and
Condition3 then

Reading top-to-bottom usually is easier than reading left-to-right, especially when dealing with long, complex
constructs.

When a part of an if statement extends beyond a single line, a begin/end pair shall be used to group these lines.
This rule shall also apply when only a comment line is present or when a single statement is spread over multiple
lines.

The else clause shall always be aligned with the corresponding if clause.

case Statements
General Topics

The individual cases in a case statement should be ordered by the case constant either numerically or
alphabetically. If you use a user-defined type, order the individual statements according to the order of the
declaration of the type.

In some situations it may be advisable to order the case statements to match their importance or frequency of hit.

The actions statements of each case should be kept simple and generally not exceed four to five lines of code. If
the actions are more complex, the code should be placed in a separate procedure or function. Local procedures
and functions are well-suited for this.

The use of the else clause of a case statement should be used only for legitimate defaults. It should always be
used to detect errors and document assumptions, for instance by raising an exception in the else clause.

All separate parts of the case statement hawe to be indented. All condition statements shall be written in
begin..end blocks. The else clause aligns with the case statement - for example:

case Condition of

http://www.econos.de/delphi/cs.html 10/25

22/02/2010 Econos - Coding Standard Document
condition:
begin
end;

else { case }

end;

The else clause of the case statement shall have a comment indicating that it belongs to the case statement.

Formatting

case statements follow the same formatting rules as other constructs in regards to indentation and naming
conventions.

while Statements

The use of the Exit procedure to exit a while loop is discouraged; when possible, you should exit the loop using
only the loop condition.

All initialization code for a while loop should occur directly before entering the while loop and should not be
separated by other non-related statements.

Any ending housekeeping shall be done immediately following the loop.
for Statements

for statements should be used in place of while statements when the code must execute for a known number of
increments.

In those cases, where stepping is needed, use a while statement that starts from the known end of the loop down
to start condition - for example:

i := AList.Count-1;
while 1 => 0 do
i :=1 - 2;

repeat statements
repeat statements are similar to while loops and should follow the same general guidelines.

with Statements
General Topics

The with statement should be used sparingly and with considerable caution. Awid overuse of with statements and
beware of using multiple objects, records, and so on in the with statement. For example:

with Recordl, Record2 do

These things can confuse the programmer and can easily lead to difficult-to-detect bugs.

http://www.econos.de/delphi/cs.html 11/25

22/02/2010 Econos - Coding Standard Document

Formatting

with statements follow the same formatting rules in regard to naming conventions and indentation as described in
this document.

Structured Exception Handling

General Topics

Exception handling should be used abundantly for both error correction and resource protection. This means that
in all cases where resources are allocated, a try..finally must be used to ensure proper deallocation of the
resource. The exception to this is cases where resources are allocated / freed in the initialization / finalization of a
unit or the constructor / destructor of an object.

Use of try..finally

Where possible, each allocation will be matched with a try..finally construct. For example, the following code
could lead to possible bugs:

SomeClassl := TSomeClass.Create
SomeClass?2 := TSomeClass.Create;
try

{ do some code }
finally

SomeClassl.Free;
SomeClass?2.Free;
end;

A safer approach to the abowe allocation would be:

SomeClassl := TSomeClass.Create
try
SomeClass2 := TSomeClass.Create;
try
{ do some code }
finally
SomeClass2.Free;
end;
finally
SomeClassl.Free;
end;

Use of try..except

Use try..except only when you want to perform some task when an exception is raised. In general, you should not
use try..except to simply show an error message on the screen because that will be done automatically in the
context of an application by the Application object. If you want to invoke the default exception handling after you
have performed some task in the except clause, use raise to re-raise the exception to the next handler.

Use of try..except..else

The use of the else clause with try..except is discouraged because it will block all exceptions, even those for
which you may not be prepared.

http://www.econos.de/delphi/cs.html 12/25

22/02/2010 Econos - Coding Standard Document

Classes

Naming / Formatting

Type names for classes will be meaningful to the purpose of the class. The type name must have the T prefix to
annotate it as a type definition-for example,

type
TCustomer = class (TObject)

Instance names for classes will generally match the type name of the class without the T prefix - for example,

var
Customer: TCustomer;

Note: See the section on User-defined Components for further information on naming components.

Fields
Naming / Formatting

Class field names follow the same naming conventions as variable identifiers except that they are prefixed with the
F annotation to signify they are field names.

Visibility

All fields should be private. Fields that are accessible outside the class scope will be made accessible through
the use of a property.

Declaration

Each field shall be declared with a separate type on a separate line - for example

TNewClass = class (TObject)
private
FFieldl: Integer;
FField2: Integer;
end;
Methods
Naming / Formatting

Method names follow the same naming conventions as described for procedures and functions in this document.

Use of Static Methods

http://www.econos.de/delphi/cs.html 13/25

22/02/2010 Econos - Coding Standard Document
Use static methods when you do not intend for a method to be overridden by descendant classes.

Use of virtual / dynamic Methods

Use virtual methods when you intend for a method to be overridden by descendant classes. Dynamic should only
be used on classes to which there will be there will be many descendant (direct or indirect). For example, a class
containing one infrequently overridden method and 100 descendent classes should make that method dynamic to
reduce the memory use by the 100 descendent classes.

It is not guaranteed, though, that making a method dynamic instead of virtual will reduce the memory
requirements. Additionally, the benefits from using dynamic in terms of resource consumption are so negligible
that is is possible to say:

Always make methods virtual, and only under exceptional circumstances dynamic.

Use of Abstract Methods

Do not use abstract methods on classes of which instances will be created. Use abstract only on base classes
that will never be created.

Property Access Methods

All access methods must appear in the private or protected sections of the class definition.

Property access methods naming conwentions follow the same rules as for procedures and functions. The read
accessor method (reader method) must be prefixed with the word Get. The write accessor method (writer method)
must be prefixed with the word Set. The parameter for the writer method will have the name Value, and its type
will be that of the property it represents - for example,

TSomeClass = class (TObject)
private
FSomeField: Integer;
protected
function GetSomeField: Integer;
procedure SetSomeField(Value: Integer);
public
property SomeField: Integer read GetSomeField write SetSomeField;
end;

Properties

Naming / Formatting

Properties that serve as accessors to private fields will be named the same as the fields they represent without
the F annotator.

Property names shall be nouns, not verbs. Properties represent data, methods represent actions.

Array property names shall be plural. Normal property names shall be singular.

Use of Access Methods

Although not required, it is encouraged to use at a minimum a write access method for properties that represent a
private field.

http://www.econos.de/delphi/cs.html 14/25

22/02/2010 Econos - Coding Standard Document

Files

Project Files

Project files will be given descriptive names. For example, The Delphi 4 Developer's Guide Bug Manager is given
the project name: DDGBugs.dpr. A system information program will be given a name like Sysinfo.dpr.

Form Files

A form file will be given a name descriptive of the form's purpose postfixed with the three characters Frm. For
example, the About Form will have a filename of AboutFrm.dpr. The Main Form will have the filename

MainFrm.dpr.

Data Module Files

A data module will be given a name that is descriptive of the datamodule's purpose. The name will be postfixed
with the two characters DM. For example, the Customers data module will have a form filename of
CustomersDM.dfm.

Remote Data Module Files

A remote data module will be given a name that is descriptive of the remote datamodule's purpose. The name will
be postfixed with the three characters RDM. For example, the Customers remote data module will have a form
filename of CustomersRDM.dfm.

Unit Files

Unit Name

Unit files will be given descriptive names. For example, the unit containing an application's main form might be
called MainFrm.pas.

Uses Clauses

The uses clause in the interface section will only contain units required by code in the interface section. Remowe
any extraneous unit names that might have been automatically inserted by Delphi.

The uses clause of the implementation section will only contain units required by code in the implementation
section. Remove any extraneous unit names.

Interface Section

The interface section will contain declarations for only those types, variables, procedure / function forward
declarations, and so on that are to be accessible by external units. Otherwise, these declarations will go into the
implementation section.

Implementation Section

The implementation section shall contain any declarations for types, variables, procedures / functions and so on
that are private to the containing unit.

Initialization Section

Do not place time-intensive code in the initialization section of a unit. This will cause the application to seem
sluggish when first appearing.

http://www.econos.de/delphi/cs.html 15/25

22/02/2010 Econos - Coding Standard Document
Finalization Section

Ensure that you deallocate any items that you allocated in the Initialization section.
Form Units

A unit file for a form will be given the same name as its corresponding form file. For example, the About Form will
have a unit name of AboutFrm.pas. The Main Form will have the unit filename of MainFrm.pas.

Data Module Units

Unit files for data modules will be given the same names as their corresponding form files. For example the
Customers data module unit will have a unit name of CustomersDM.pas.

General Purpose Units

A general purpose unit will be given a name meaningful to the unit's purpose. For example, a utilities unit will be
given a name of BugUtilities.pas. A unit containing global variables will be given the name of
CustomerGlobals.pas.

Keep in mind that unit names must be unique across all packages used by a project. Generic or common unit
names are not recommended.

Component Units

Component units will be placed in a separate directory to distinguish them as units defining components or sets
of components. They will never be placed in the same directory as the project. The unit name must be meaningful
to its content.

Note: See the section on User-defined Components for further information on component naming standards.

File Headers

Use of informational file header is encouraged for all source files, project files, units, and so on. A proper file
header must contain the following information:

{
Copyright © YEAR by AUTHORS

}

Usually this header will be augmented with contact information and a one-line description of the unit's purpose. An
example of this would be

{***}

This line describes the purpose of the unit

{ }
{ }
{ }
{ Copyright (c) 1998 WidgetMakers, Ltd. }
{ contact@WidgetMakers.corp }
{ }
{ }
{ }
{ }

All rights reserved.

R IR I S b S S b S e S S O S b b b b b b b b b b b b b b b b S I IR SR S I S S S S S S S S 2 b b b b b b b b b b b Sb Sb b 4

http://www.econos.de/delphi/cs.html 16/25

22/02/2010 Econos - Coding Standard Document

Forms and Data Modules

Forms
Form Type Naming Standard

Forms types will be given names descriptive of the form's purpose. The type definition will be prefixed witha T. A
descriptive name will follow the prefix. Finally, Form will postfix the descriptive name. For example, the type name
for the About Form will be

TAboutForm = class (TForm)

The main form definition will be

TMainForm = class (TForm)

The customer entry form will have a name like

TCustomerEntryForm = class (TForm)

Form Instance Naming Standard

Form instances will be named the same as their corresponding types without the T prefix. For example, for the
preceding form types, the instance names will be as follows:

|Type Name ||Instance Name |
|TAboutForm ||AboutForm |
[TMainForm MainForm |

|

[TCustomerEntryForm ||CustomerEntryForm

Auto-creating Forms

Only the main form will be auto-created unless there is good reason to do otherwise. All other forms must be
removed from the auto-create list in the Project Options dialog box. See the following section for more information.

Modal Form Instantiation Functions

All form units will contain a form instantiation function that will create, set up, show the form modally, and free the
form. This function will return the modal result returned by the form. Parameters passed to this function will follow
the "parameter passing" standard specified in this document. This functionality is to be encapsulated in this way
to facilitate code reuse and maintenance.

The form variable will be removed from the unit and declared locally in the form instantiation function. Note, that
this will require that the form be removed from the auto-create list in the Project Options dialog box. See Auto-
Creating Forms in this document.

For example, the following unit illustrates such a function for a GetUserData form.

http://www.econos.de/delphi/cs.html 17/25

22/02/2010

unit UserDataFrm;

interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls;
type
TUserDataForm = class (TForm)
edtUserName: TEdit;
edtUserID: TEdit;
private
{ Private declarations }
public
{ Public declarations }
end;
function GetUserData (var aUserName: string; var aUserID: Integer):
implementation
{SR *.DFM}
function GetUserData (var aUserName: string; var aUserID: Integer):
var
UserDataForm: TUserDataForm;
begin
UserDataForm := TUserDataForm.Create (Application);
try

UserDataForm.Caption :=

Econos - Coding Standard Document

'Getting User Data';

Result := UserDataForm.ShowModal;
if Result = mrOK then
begin
aUserName := UserDataForm.edtUserName.Text;
aUserID := StrTolnt (UserDataForm.edtUserID.Text);
end;
finally
UserDataForm.Free;
end;
end;
end.

Data Modules

Data Module Naming Standard

Word;

Word;

A DataModule type will be given a name descriptive of the data module's purpose. The type definition will be
prefixed with a T. A descriptive name will follow the prefix. Finally, the name will be postfixed with the word
"DataModule". For example, the type name for the Customer data module would be something like:

TCustomerDataModule =

http://www.econos.de/delphi/cs.html

class (TDataModule)

18/25

22/02/2010 Econos - Coding Standard Document
The Orders data module would have a name like

TOrdersDataModule = class (TDataModule)

Data Module Instance Naming Standard

Data module instances will be named the same as their corresponding types without the T prefix. For example, for
the preceding form types, the instance names will be as follows:

|Type Name ||Instance Name |
|TCustomerDataModuIe ||CustomerDataModuIe |
[TOrdersDataModule ||OrdersDataModule |
Packages

Use of Runtime vs Design Packages

Runtime packages will contain only units / components required by other components in that package. Other,
units containing property / component editors and other design only code shall be placed into a design package.
Registration units will be placed into a design package.

File Naming Standards

Packages will be named according to the following templates:
"iiilibvv.pkg" - design package
"iiistdvv.pkg" - runtime package

where the characters "iii" signify a 3-character identifying prefix. This prefix may be used to identify the company,
person or any other identifying entity.

The characters "wW" signify a version for the package corresponding to the Delphi version for which the package is
intended.

Note that the package name contains either "lib" or "std" to signify it as a runtime or design time package.

Where there are both design and runtime packages, the files will be named similarly. For example, packages for
Delphi 4 Deweloper's Guide are named as:

DdgLib40.pkg - design package

DdgStd40.pkg - runtime package

Components

User-defined Components

Components shall be named similarly to classes as defined in the section entitled "Classes" with the exception
that they are given a 3-character identifying prefix. This prefix may be used to identify the company, person or any
other entity. For example, a clock component written for Delphi 4 Developer's Guide would be defined as:

http://www.econos.de/delphi/cs.html 19/25

22/02/2010 Econos - Coding Standard Document

TddgClock = class (TComponent)

Note that the 3-character prefix is in lower case.

Component Units

Component units shall contain only one major component. A major component is any component that appears on
the Component Palette. Any ancillary components / objects may also reside in the same unit for the major
component.

Use of Registration Units

The registration procedure for components shall be remowved from the component unit and placed in a separate
unit. This registration unit shall be used to register any components, property editors, component editors, experts,
etc.

Component registering shall be done only in design packages, therefore the registration unit shall be contained in
the design package and not in the runtime package.

It is suggested that registration units are named as:

XxXXReg.pas

Where the "Xxx" shall be a 3-character prefix used to identify a company, person or any other entity. For
example, the registration unit for the components in the Delphi 4 Developer's Guide would be named DdgReg.pas.

Component Instance Naming Conventions

All components must be given descriptive names. No components will be left with their default names assigned by
Delphi. Components will have a lowercase prefix to designate their type. The reasoning behind prefixing
component names rather than post-fixing them is to make searching component names in the Object Inspector
and Code Explorer easier by component type.

Component Prefixes

The following prefixes will be assigned to the standard components that ship with Delphi 4. Please add to this list
for third-party components as they are added.

Standard Tab

Prefix Component

mm TMainMenu

pm TPopupMenu
mmi TMainMenultem
pmi TPopupMenultem
Ibl TLabel

edt TEdit

mem TMemo

btn TButton

chk TCheckBox

http://www.econos.de/delphi/cs.html 20/25

22/02/2010
rb

Ib
cb
scb
gb
g
pnl
cl

Econos - Coding Standard Document

TRadioButton
TListBox
TComboBox
TScrollBar
TGroupBox
TRadioGroup
TPanel
TCommandList

Additional Tab

Prefix
bbtn
sb
me
sg
dg
img
shp
bv
sbx
clb
spl
stx
cht

Win32 Tab

Prefix
tbc
pgc
il

re
tbr
prb
ud
hk
ani
dtp
tv
Iv
hdr
stb
tib
clb

Component
TBitBtn
TSpeedButton
TMaskEdit
TStringGrid
TDrawGrid
Timage
TShape
TBewel
TScrollBox
TCheckListbox
TSplitter
TStaticText
TChart

Component
TTabControl
TPageControl
TimagelList
TRichEdit
TTrackBar
TProgressBar
TUpDown
THotKey
TAnimate
TDateTimePicker
TTreeView
TListView
THeaderControl
TStatusBar
TToolBar
TCoolBar

http://www.econos.de/delphi/cs.html

21/25

22/02/2010

System Tab

Econos - Coding Standard Document

Prefix Component

tm
pb
mp
olec
ddcc
ddci
ddsc
ddsi

TTimer
TPaintBox
TMediaPlayer
TOleContainer
TDDEClientConv
TDDEClIientltem
TDDEServerConv
TDDEServerltem

Internet Tab

Prefix Component

csk
ssk
wbd

pp
tp
dstp
nmdt
nec
nf
nftp
nhttp
nMsg
nmsg
nntp
npop
nuup
smtp
nst
nsts
ntm
nudp
psk
ngs
html
url

smi

TClientSocket
TServerSocket
TWebDispatcher
TPageProducer
TQueryTableProducer
TDataSetTableProducer
TNMDayTime
TNMEcho
TNMFinger
TNMFtp

TNMHttp

TNMMsg
TNMMSGServ
TNMNNTP
TNMPop3
TNMUUProcessor
TNMSMTP
TNMStrm
TNMStrmServ
TNMTime

TNMUdp
TPowerSock
TNMGeneralServer
THtmI

TNMUH
TSimpleMail

Data Access Tab

Prefix Component

ds

TDataSource

http://www.econos.de/delphi/cs.html

22/25

22/02/2010
tbl

qry
sp
db
ssn
bm

usql

Econos - Coding Standard Document

TTable
TQuery
TStoredProc
TDataBase
TSession
TBatchMowe
TUpdateSQL

Data Controls Tab

Prefix Component

dbg
dbn
dbt
dbe
dbm
dbi
dblb
dbcb
dbch
dbrg
dbll
dblc
dbre
dbcg
dbch

TDBGrid
TDBNavigator
TDBText

TDBEdit
TDBMemo
TDBImage
TDBListBox
TDBComboBox
TDBCheckBox
TDBRadioGroup
TDBLookupListBox
TDBLookupComboBox
TDBRichEdit
TDBCtriGrid
TDBChart

Decision Cube Tab

Prefix Component

dcb
dcq
dcs
dcp
dcg
dcgr

TDecisionCube
TDecisionQuery
TDecisionSource
TDecisionPivot
TDecisionGrid
TDecisionGraph

QReport Tab

Prefix Component

qr
grsd
arb
grcb
qrg
qrl

TQuickReport
TQRSubDetail
TQRBand
TQRChildBand
TQRGroup
TQRLabel

http://www.econos.de/delphi/cs.html

23/25

22/02/2010 Econos - Coding Standard Document
grt TQRText

gre TQRExpr

grs TQRSysData
grm TQRMemo

gt TQRRichText
grdr TQRDBRichText
grsh TQRShape

qri TQRImage

grdi TQRDBMImage
grcr TQRCompositeReport
grp TQRPreview
grch TQRChart

Dialogs Tab

The dialog box components are really forms encapsulated by a component. Therefore, they will follow a
conwention similar to the form naming convention. The type definition is already defined by the component
name. The instance name will be the same as the type instance without the numeric prefix, which is
assigned by Delphi. Examples are as follows:

Type Instance Name
TOpenDialog OpenDialog
TSawveDialog SawveDialog

TOpenPictureDialog OpenPictureDialog
TSawePictureDialog SavePictureDialog

TFontDialog FontDialog
TColorDialog ColorDialog
TPrintDialog PrintDialog

TPrintSetupDialog PrinterSetupDialog
TFindDialog FindDialog
TReplaceDialog ReplaceDialog

Win31 Tab

Prefix Component

dbll TDBLookuplList
dblc TDBLookupCombo
ts TTabSet

ol TOutline

tnb TTabbedNoteBook
nb TNoteBook

hdr THeader

fib TFileListBox

dib TDirectoryListBox
dcb TDriveComboBox
fcb TFilterComboBox

Samples Tab
http://www.econos.de/delphi/cs.html 24/25

Econos - Coding Standard Document

22/02/2010
Prefix Component
ag TGauge
cg TColorGrid
spb TSpinButton
spe TSpinEdit
dol TDirectoryOutline
cal TCalendar
ibea TIBEventAlerter

ActiveX Tab
Prefix Component
cfix TChartFX
vsp TVSSpell
fib TF1Book
vic TVTChart
grp TGraph

Midas Tab
Prefix Component
prv TProvider
cds TClientDataSet
gcds TQueryClientDataSet
dcom TDCOMConnection
olee TOleEnterpriseConnection
sck TSocketConnection
rms TRemoteSenver
mid TmidasConnection

Return to Delphi Information Resources.

Copyright © 1998 Econos - Stefan Hoff meister

http://www.econos.de/delphi/cs.html

25/25

