22/02/2010 JCL Delphi Language Style Guide
JCL Delphi Language Style Guide

Version 1.2, Last modified on August 14, 2002 - Matthias Thoma
Version 1.1, Last modified on January 10, 2002 - Matthias Thoma
Version 1.0, Last modified on September 19, 2001 - Marcel van Brakel

Preample

This article documents a standard style for formatting Delphi code which is to be included in the JEDI Code
Library (JCL). It is based on the conventions developed by the Delphi team at Borland. This document is a
modified/annotated version of the article originally written by Charles Calvert (with his permission to do so).
The original article can be obtained from the Borland Community site.

Delphi is a beautifully designed language. One of its great virtues is its readability. These standards are
designed to enhance that readability of Delphi code. When developers follow the simple conventions laid out
in this guide, they will be promoting standards that benefit all Delphi developers by using a uniform style that is
easy to read. Efforts to enforce these standards will increase the value of a developer's source code,
particularly during maintenance and debugging cycles.

It goes without saying that these are conventions based primarily on matters of taste. Though we believe in,
and admire the style promoted in these pages, we support them not necessarily because we believe they are
right and others are wrong, but because we believe in the efficacy of having a standard which most
developers follow. The human mind adapts to standards, and finds ways to quickly recognize familiar
patterns, thereby assimilating meaning quickly and effortlessly. It is the desire to create a standard that will
make reading code as simple as possible for the largest number of people that is behind this effort. If at first
our guidelines seem strange to you, we ask you to try them for a while, and then we are sure you will grow
used to them over time. Or, if you prefer, keep your code in your own format,and run it through a program
that follows our guidelines before submitting it to Project JEDI, Borland or to a public repository.

As documented elsewhere, it's not necessary for you to format your code according to the rules of this
document before submitting it to Project JEDI, although that would be great. Instead the reformatting is done
by the JCL unit owners where necessary. We accept feedback in the form of corrections or suggestions.
Send your communications to the JCL team. Note that with a few exceptions this document does not include
coding guideliness, only formatting guideliness. A separate document for coding guideliness is in the making,

Do not post this specification on other web sites. Instead, simply link to either this version of the document or
the original one on Charlie's website.

Contents
1.0 Introduction

1.1 Background
1.2 Acknowledgments

2.0 Source Files

2.1 Source-File Naming
2.2 Source-File Organization

2.2.1 unit declaration
2.2.2 uses declarations
2.2.3 class/interface declarations

3.0 Naming Conventions

3.1 Unit Naming
3.2 Class/Interface Naming

jcl.delphi-jedi.org/.../styleguide.html 1/18

22/02/2010 JCL Delphi Language Style Guide

3.3 Field Naming

3.4 Method Naming
3.5 Local Variable Naming

3.6 Reserved Words
3.7 Type Declarations

4.0 White Space Usage

4.1 Blank Lines
4.2 Blank Spaces

4.2.1 A single blank space (not tab) should be used
4.2.2 Blanks should not be used

4.3 Indentation
4.4 Continuation Lines

5.0 Comments

5.1 Block Comments
5.2 Single-Line Comments

6.0 Classes

6.1 Class Body Organization
6.2 Method Declarations

6.3 Data Store Declarations

7.0 Interfaces

7.1 Interface Body Organization

8.0 Statements

8.1 Simple Statements

8.1.1 Assignment and expression statements
8.1.2 Local variable declarations
8.1.3 Array declarations

8.2 Compound Statements

8.2.3 if statement

8.2.4 for statement

8.2.5 while statement
8.2.6 repeat until statement
8.2.7 case statement

8.2.8 try statement

9.0 Miscellanous

9.1 Const, Var and Type
9.2 Conditional compilation

9.3 Resource strings

9.4 Exceptions
9.5 Categories and routine separation

9.6 Assembler

9.7 Local routines

9.8 Parameter Declarations

9.9 Initialization of global variables

jcl.delphi-jedi.org/.../styleguide.html

2/18

22/02/2010 JCL Delphi Language Style Guide
1.0 Introduction

This document is not an attempt to define a grammar for the Delphi language. For instance, it is illegal to place
a semicolon before an else statement; the compiler simply won't let you do it. As a result, I do not lay that rule
out in this style guide. This document is meant to define the proper course of action in places where the
language gives you a choice. I usually remain mute on matters that can only be handled one way.

1.1 Background

The guidelines presented here are based on the public portions of the Delphi source. The Delphi source should follow
these guidelines precisely. If you find cases where the source varies from these guidelines, then these guidelines, and not
the errant source code, should be considered your standard. Nevertheless, you should use the source as a supplement to
these guidelines, at least so far as it can help you get a general feel for how your code should look.

1.2 Acknowledgments

The format of this document and some of its language is based on work done to define a style standard for the Java
language. Java has had no influence on the rules for formatting Delphi source, but documents found on the Sun web site
formed the basis for this document. In particular the style and format of this document were heavily influenced by ""A
Coding Style Guide for Java WorkShop and Java Studio Programming" by Achut Reddy. That document can be found at
the following URL: http://www.s un.com/workshop/java/wp-coding

The Delphi team also contributed heavily to the generation of this document, and indeed, it would not have been possible to
create it without their help.

Many of the modifications to this document we're at least partly based on feedback by Mike Lischke. Other people who
contributed are Robert Marquardt and Matthias Thoma.

2.0 Source Files

Delphi source is divided up primarily into units and Delphi Project files, which both follow the same
conventions. A Delphi Project file has a DPR extension. It is the main source file for a project. Any units used
in the project will have a PAS extension. Additional files, such as batch files, html files, or DLLs, may play a
role in a project, but this paper only treats the formatting of DPR and PAS files.

2.1 Source-File Naming

Delphi supports long file names. If you are appending several words to create a single name, then it is best to use capital
letters for each word in the name: JclMyFile.pas. This is known as InfixCaps, or Camel Caps. Extensions should be in
lower case. All JEDI Code Library source-files must be prefixed with 'Jcl'. Also, since these files are to be ported to
Linux be carefull that you use the same capitalization everywhere a source-file is referenced (Linux filenames are, as
opposed to Win32, case-sensitive).

2.2 Source-File Organization
For the JCL the following header is used. Replace JclGraphics with the appropriate unit name. The Last Modified date is
kept up to date by the unit owner and should always match the last modified date in the filesystem.

{**}

Project JEDI Code Library (JCL)

The contents of this file are subject to the Mozilla Public License Version
1.0 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
the specific language governing rights and limitations under the License.

The Original Code is JclGraphics.pas.
The Initial Developer of the Original Code is documented in the accompanying

help file JCL.chm. Portions created by these individuals are Copyright (C)
2000 of these individuals.

e e T e B T T T e T M e N T e e e M M

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

Contains various graphics related classes and subroutines such as a Win32

jcl.delphi-jedi.org/.../styleguide.html 3/18

22/02/2010 JCL Delphi Language Style Guide

regions encapsulatiion, a very fast TBitmap replacement and various
transformation and filtering routines.

{ }
{ }
{ }
{ Unit owner: Wim de Cleen }
{ Last modified: June 7, 2000 }
{ }
{ }

khkkhkhkhhkhhhhhhhhkhdhhkhhkhdhkhdhkhkhkhkhkhkhkkhkkhkk

unit Buttons;
Compiler directives are not directly included in the source files. Instead a global JCL.INC include file is used which
defines all standard directives. Ex.

{$I JCL.INC}

interface

If overriding directives are needed they can be included below this include but this must be avoided. If overriding
directives are needed these must be documented. You should strive to override directives only a local scope. For example,
for a single procedure.

{$S_IW_IR_}
{$C PRELOAD}

interface

uses
Windows, Messages, Classes, Controls, Forms, Graphics, StdCtrls, ExtCtrls, CommCtrl;

It does not matter if you place a type section before a const section, or if you mix type and const sections up in any order
you choose.

The implementation should list the word implementation first, then the uses clause, then any include statements or other

directives:

implementation

uses
Consts, SysUtils, ActnlList, ImgList;

{$R BUTTONS.RES}

2.2.1 Unit declaration

Every source file should contain a unit declaration. The word unit is a reserved word, so it should be in lower case. The
name of the unit should be in mixed upper and lowercase, and must be the same as the name used by the operating
system's file system. Example:

unit MyUnit;

This unit would be called MyUnit.pas when an entry is placedin the file system.

2.2.2 uses declarations

Inside units, a uses declaration should begin with the word uses, in lowercase. Add the names of the units, following the
capitalization conventions used in the declaration found inside the units:

uses MyUnit;
The uses clause is always started on the next line and units are written down one after another, wrapping at 80 columns.
Each unit must be separated from its neighbor by a comma, and the last unit should have a semicolon after it:

uses

Windows, SysUtils, Classes, Graphics, Controls, Forms, TypInfo;

Furthermore, you should separate the standard Delphi units, JCL units and Platform dependent units. Finally, it is
prefered to list to units in alpabetical order unless the order is important (this should never be the case but sometimes is,
an example is the Windows unit which - by convention - should always be listed first). An example follows (comments

jcl.delphi-jedi.org/.../styleguide.html 4/18

22/02/2010 JCL Delphi Language Style Guide
shouldn't be included):

uses
{$IFDEF WIN32}
Windows, ActiveX, // Windows units
{$ENDIF}
{S$IFDEF LINUX}
..Linux specific units go here
{$ENDIF}
Math, SysUtils, // Standard Delphi platform independent units
JclBase, JclStrings; // JCL units

2.2.3 class/interface declarations

A class declaration begins with two spaces, followed by an identifier prefaced by a capital T. Identifiers should begin with a
capital letter, and should have capital letters for each embedded word (InfixCaps). Never use tab characters in your Delphi
source. Example:

TMyClass
Follow the identifier with a space, then an equals sign, then the word class, all in lower case:
TMyClass = class (TOject)
If you want to specify the ancestor for a class, add a parenthesis, the name of the ancestor class, and closing parenthesis:
TMyClass = class (TObject)

Scoping directives should be two spaces in from the margin, and declared in the order shown in this example:

TMyClass = class (TObject)
private

protected

public

published

end;

JCL classes always have their ancestor explicitly declared, even for TObject. The class keyword and ances tor should be
separated with a space:

TJclMyClass = class (TObject)

Data should always be declared only in the private section, and its identifier should be prefaced by an F. All type
declarations should be four spaces in from the margin:

TMyClass = class (TObject)
private
FMyData: Integer;
function GetData: Integer;
procedure SetData(Value: Integer);
public
published
property MyData: Integer read GetData write SetData;
end;

Interfaces follow the same rules as class declarations, except you should omit any scoping directives or private data, and
should use the word interface rather than class.

3.0 Naming Conventions

Except for reserved words and directives, which are in all lowercase, all Pascal identifiers should use
InfixCaps, which means the first letter should be a capital, and any embedded words in an identifier should be
in caps, as well as any acronym that is embedded:

MyIdentifier MyFTPClass
The major exception to this rule is in the case of header translations, which should always follow the

jcl.delphi-jedi.org/.../styleguide.html 5/18

22/02/2010 JCL Delphi Language Style Guide
conventions used in the header. For instance, writte WM_LBUTTONDOWN, not wm LButtonDown.

Except in header translations, do not use underscores to separate words. Class names should be nouns or
noun phrases. Interface or class names depend on the salient purpose of the interface.

GOOD type names:

AddressForm
ArraylndexOutOfBoundsException

BAD type names:

ManageLayout (verb phrase)
delphi is new_to me (underscores)

It seems to be unavoidable but every now and then someone suggests using hungarian, or a similar, notation
for identifier naming. Although good arguments can be provided in favor of hungarian notation, at least as
many arguments can be given against it. The JCL will not use hungarian notation, ever! There, that's out of the
way. Identifiers in the JCL should be named as the examples above, names which describe the purpose of the
identifier not what type they happen to be of.

3.1 Unit Naming

Use InfixCaps, as described at the beginning of this section. See also the section on unit declarations

As described earlier, all JCL units should have the "Jcl" prefix.

3.2 Class/Interface Naming
Use InfixCaps, as described at the beginning of this section. Begin each type declaration with a capital T:
TMyType

See also the section on class/interface declarations.

All JCL classes are prefixed with 'TJcl' not just a capital T. Types which are used only internally don't have to include
the 'Jcl' prefix although you should be carefull with the naming when they are declared in the interface section.

3.3 Field Naming

Use InfixCaps, as described at the beginning of this section. Begin each type declaration with a capital F, and declare all
data types in the private section, using properties or getters and setters to provide public access. For example, use the
name GetSomething to name a function returning an internal field value and use SetSomething to name a procedure
setting that value.

Do not use all caps for const declarations except where requiredin header translations.

Delphi is created in California, so we discourage the use of hungarian notation, except where requiredin header
translations:

CORRECT
FMyString: string;

INCORRECT
lpstrMyString: string;

The exception to the Hungarian notation rule is in enumerated types.
TBitBtnKind = (bkCustom, bkOK, bkCancel, bkHelp,

bkYes, bkNo, bkClose, bkAbort, bkRetry,
bkIgnore, bkAll) ;

In this case the letters bk are inserted before each element of this enumeration. bk stands for ButtonKind.

When thinking about naming conventions, consider that one-character field names should be avoided except for
temporary and looping variables.

Looping variables are by convention named I (capital i) and J. Other commonly used single character identifier names
are: S (string) and R (Result). Single letter variables/field names should always be capitals but other then the ones

jcl.delphi-jedi.org/.../styleguide.html

6/18

22/02/2010 JCL Delphi Language Style Guide

mentioned above you s hould avoid them and use more meaningful names.

Avoid variable 1 ("el") because it is hard to distinguish it from 1 ("one'") on some printers and dis plays.

3.4 Method Naming

Method names should use the InfixCaps style. Start with a capital letter, and capitalize the first letter of any subsequent
word in the name, as well as any letters that are part of an acronym. All other characters in the name are lower case. Do
not use underscores to separate words. Note that this is identical to the naming convention for non-constant fields;
however it should always be easy to distinguish the two from context. Method names should be imperative verbs or verb
phrases.

Examples:
Good method names:

ShowStatus
DrawCircle
AddLayoutComponent

Bad method names:

MouseButton (noun phrase; doesn't describe function)
drawCircle (starts with lower-case letter)
add_layout_component (underscores)

ServerRunning (verb phrase, but not imperative)

A note about the last example (ServerRunning): The function of this methodis unclear. Does it start the server running
(better: StartServer), or test whether or not it is running (better: IsServer Running)?

A method to get or set some property of the class should be called GetProperty or SetProperty respectively, where
Property is the name of the property.

Examples:

GetHeight, SetHeight
A method to test some boolean property of the class should be called Is Visible, where Visible is the name of the property.
Examples:

IsResizable, IsVisible

3.5 Local Variable Naming

Local variables follow the same naming rules as field names, except you omit the initial F, since this is not a Field of an
object. (see section 3.3).

3.6 Reserved Words

Reserved words and directives should be all lowercase. This can be a bit confusing at times. For instance types such as
Integer are just identifiers, and appear with a first cap. Strings, however, are declared with the reserved word string,
which should be all lowercase.

3.7 Type Declarations

All type declarations should begin with the letter T, and should follow the same capitalization specification laid out in the
beginning of this section, or in the section on class declarations.

4.0 White Space Usage

4.1 Blank Lines

Blank lines can improve readability by grouping sections of the code that are logically related. A blank line should also be
usedin the following places:

1. After the copyright block comment, package declaration, and import section.
2. Between class declarations.
3. Between method declarations.

4.2 Blank Spaces

Delphi is a very clean, easy to read language. In general, you don't need to add a lot of spaces in your code to break up

jcl.delphi-jedi.org/.../styleguide.html 7/18

22/02/2010 JCL Delphi Language Style Guide

lines. The next fewsections give you some guidelines to follow when placing spaces in your code.

4.2.2 Blanks should not be used:

. Between a method name and its opening parenthesis.

. Before or after a .(dot) operator.

. Between a unary operator and its operand.

. Between a cast and the expression being cast.

. After an opening parenthesis or before a closing parenthesis.

. After an opening square bracket [or before a closing square bracket |.
. Before a semicolon.

N AN AW N -

Examples of correct usage:

function TMyClass.MyFunc(var Value: Integer);

MyPointer := @MyRecord;
MyClass := TMyClass (MyPointer) ;
MyInteger := MylIntegerArray[5];

Examples of incorrect usage:

function TMyClass.MyFunc(var Value: Integer) ;

MyPointer := @ MyRecord;
MyClass := TMyClass (MyPointer) ;
MyInteger := MylIntegerArray [5 1 ;

4.3 Indentation

You should always indent two spaces for all indentation levels. In other words, the firstlevel of indentation is two spaces,
the second level four spaces, the third level 6 spaces, etc. Never use tab characters.

There are few exceptions. The reserved words unit, uses, type, interface, implementation, initialization and finalization
should always be flush with the margin. The final end s tatement at the end of a unit should be flush with the margin. In the
project file, the word program, and the main begin and end block should all be flush with the margin. The code inside the
begin..end block, should be indented at least two spaces.

4.4 Continuation Lines

Lines should be limited to 80 columns. Lines longer than 80 columns should be broken into one or more continuation
lines, as needed. All the continuation lines should be aligned and indented from the first line of the statement, and
indented two characters. Always place begin statements on their own line.

Examples:

// CORRECT

function CreateWindowEx (dwExStyle: DWORD;
lpClassName: PChar; lpWindowName: PChar;
dwStyle: DWORD; X, Y, nWidth, nHeight: Integer;
hWndParent: HWND; hMenu: HMENU; hInstance: HINST;
lpParam: Pointer): HWND; stdcall;

if ((X =Y) or (Y = X) or
(Z = P) or (F = J) then
begin

Never wrap a line between a parameter and its type, unless itis a comma separated list, then wrap at least before the last
parameter so the type name follows to the next line. The colon for all variable declarations contains no whitespace between
it and the variable. There should be a single space following the colon before the type name;

procedure Foo(Paraml: Integer; Param2: Integer);

procedure Foo(Param :Integer; Param2:Integer);

A continuation line should never start with a binary operator. Avoid breaking a line where normally no white space

jcl.delphi-jedi.org/.../styleguide.html

8/18

22/02/2010 JCL Delphi Language Style Guide

appears, such as between a method name and its opening parenthesis, or between an array name and its opening s quare
bracket. If you must break under these circumstances, then one viable place to begin is after the opening parenthesis that
follows a method name. Never place a begin statement on the same line with any other code.

Examples:

// INCORRECT

while (LongExpressionl or LongExpression2) do begin
// DoSomething
// DoSomethingElse;

end;

while (LongExpressionl or LongExpression2) do
begin

// DoSomething

// DoSomethingElse;
end;

if (LongExpressionl) or
(LongExpression2) or
(LongExpression3) then

5.0 Comments

The Delphi language supports two kinds of comments: block, and single-line comments. Some general
guidelines for comment usage include:

It is helpful to place comments near the top of unit to explain its purpose.
It is helpful to place comments before a class declaration.

It is helpful to place comments before some method declarations.

Avoid making obvious comments:

i =14+ 1; // Add one to i

Remember that misleading comments are worse than no comments at all.

Avoid putting any information into comments that is likely to become out of date.

Avoid enclosing comments in boxes drawn with asterisks or other special typography.

Temporary comments that are expected to be changed or removed later should be marked with the
special tag "TODO:" so that they can easily be found afterwards. Ideally, all temporary comments
should have been removed by the time a program is ready to be shipped.

Example:

// TODO: Change this to call Sort when it is fixed
List.MySort;

5.1 Block Comments

Delphi supports two types of block comments. The most commonly used block comment is a pair of curly braces: { }. The
Delphi team prefers to keep comments of this type as spare and simple as possible. For instance, you should avoid using
asterisks to create patterns or lines inside your comments. Instead, make use of white space to break your comments up,
much as you would in a word processing document. The words in your comments should start on the same line as the first
curly brace, as shown in this excerpt from DsgnIntf.pas:

{ TPropertyEditor

Edits a property of a component, or list of components,
selected into the Object Inspector. The property
editor is created based on the type of the

property being edited as determined by the types
registered by...

etc...

GetXxxValue
Gets the value of the first property in the

jcl.delphi-jedi.org/.../styleguide.html

9/18

22/02/2010 JCL Delphi Language Style Guide
Properties property. Calls the appropriate
TProperty GetXxxValue method to retrieve the
value.

SetXxxValue Sets the value of all the properties
in the Properties property. Calls the appropriate
TProperty SetXxxxValue methods to set the value. }

A block comment is always used for the copyright/ID comment at the beginning of each source file. It is also used to
"comment out'" several lines of code.

Block comments used to describe a method should appear before the method declaration.
Example:

// CORRECT
{ TMyObject.MyMethod
This routine allows you to execute code. }

procedure TMyObject.MyMethod;
begin
end;

procedure TMyObject.MyMethod;
{**

TMyObject.MyMethod

This routine allows you to execute code.
***}
begin
end;

A second kind of block comment contains two characters, a parenthesis and an asterisk: (* *). This is sometimes called
starparen comments. These comments are generally useful only during code development, as their primary benefit is that
they allow nesting of comments, as long as the nest level is less than 2. Object Pascal doesn't support nesting comments
of the same type within each other, so really there is only one level of comment nesting: curly inside of s tarparen, and
starparen inside of curly. As long as you don't nest them, any other standard Pascal comments between comments of this
type will be ignored. As a result, you can use this syntax to comment out a large chunk of code that is full of mixed code
and comments:

(* procedure TForml.ButtonlClick (Sender: TObject) ;
begin

DoThis; // Start the process

DoThat; // Continue iteration

{ We need a way to report errors here, perhaps using

a try finally block }

CallMoreCode; // Finalize the process

end; *)

In this example, the entire Button1Click method is commented out, including any of the subcomments found between the
procedure's begin..end pair.

5.2 Single-Line Comments

A single-line comment consists of the characters // followed by text. Include a single space between the // and the
comment itself. Place single line comments at the same indentation level as the code that follows it. You can group single-
line comments to form a larger comment.

A single-line comment or comment group should always be preceded by a blank line, unless it is the firstline in a block.
If the comment applies to a group of several statements, then the comment or comment group should also be followed by a
blank line. If it applies only to the next statement (which may be a compound s tatement), then do not follow it with a blank
line.

Example:

Tablel.Open;

Single-line comments can also follow the code they reference. These comments, sometimes referred to as trailing
comments, appear on the same line as the code they describe. They should have at least one space-character separating

jcl.delphi-jedi.org/.../styleguide.html

10/18

22/02/2010 JCL Delphi Language Style Guide

them from the code they reference. If more than one trailing comment appears in a block of code, they should all be
aligned to the same column.

Example:

if (not IsVisible) then
Exit; // nothing to do
Inc(StrLength); // reserve space for null terminator

Avoid commenting every line of executable code with a trailing comment. It is usually best to limit the comments inside
the begin..end pair of a method or function to a bare minimum. Longer comments can appear in a block comment before
the method or function declaration.

Classes

6.1 Class Body Organization
The body of a class declaration should be organized in the following order:

* Field declarations
¢ Method declarations
¢ Property declarations

The fields, properties and methods in your class should be arranged alphabetically by name.

6.1.1 Access levels
Except for code inserted by the IDE, the scoping directives for a class should be declared in the following order:

Private declarations
Protected declarations
Public declarations
Publis hed declarations

* o o o

There are four access levels for class members in Delphi: publis hed, public, protected, and private -- in order of
decreasing accessibility. By default, the access level is published. In general, a member should be given the lowest access
level which is appropriate for the member. For example, a member which is only accessedby classes in the same unit
should be set to private access. Also, declaring a lower access level will often give the compiler increased opportunities
for optimization. On the other hand, use of private makes it difficult to extend the class by sub-classing. If there is reason
to believe the class might be sub-classed in the future, then members that might be needed by sub-classes should be
declared protected ins tead of private, and the properties used to access private data should be given protected status.

You should never allow public access to data. Data should always be declared in the private section, and any public access
should be via getter and s etter methods, or properties.

6.1.8 Constructor declarations

Methods should be arranged alphabetically. It is correct either to place your constructors and destructors at the head of
this list in the public section, or to arrange them in alphabetical order within the public section.

If there is more than one constructor, and if you choose to give them all the same name, then sort them lexically by formal
parameter list, with constructors having more parameters always coming after those with fewer parameters. This implies
that a constructor with no arguments (if it exists) is always the first one. For greatest compatibility with C++Builder, try
to make the parameter lists of your constructors unique. C++ cannot call constructors by name, so the only way to
distinguish between multiple constructors is by parameter list.

6.2 Method Declarations
If possible, a method declaration should appear on one line.

Examples:

procedure ImageUpdate (Image img, infoflags: Integer,
x: Integer, y: Integer, w: Integer, h: Integer)

Interfaces

Interfaces are declared in a manner that runs parallel to the declaration for classes:

jcl.delphi-jedi.org/.../styleguide.html

11/18

22/02/2010 JCL Delphi Language Style Guide

InterfaceName = interface ([Inherited Interfacel])
InterfaceBody
end;

An interface declaration should be indented two spaces. The body of the interface is indented by the standard
indentation of four spaces. The closing end statement should also be indented two characters. There should
be a semi-colon following the closing end statement.

There are no fields in an interface declaration. Properties, however, are allowed.

All interface methods are inherently public and abstract; do not explicitly include these keywords in the
declaration of an interface method.

Except as otherwise noted, interface declarations follow the same style guidelines as classes.
7.1 Interface Body Organization

The body of an interface declaration should be organized in the following order:

1. Interface method declarations
2. Interface property declarations

The declaration styles of interface properties and methods are identical to the styles for class properties and methods.

8.0 Statements

Statements are one or more lines of code followed by a semicolon. Simple statements have one semicolon,
while compound statements have more than one semicolon and therefore consist of multiple simple
statements.

Here is a simple statement:
A := B;
Here is a compound, or structured, statement:
begin
B :=

cC;
A := B;
end;

8.0.1 Simple Statements

A simple statement contains a single semicolon. If you need to wrap the statement, indent the second line two
spaces in from the previous line:

MyValue :=
MyValue + (SomeVeryLongStatement / OtherLongStatement) ;

8.0.1 Compound Statements

Compound Statements always end with a semicolon, even if it is syntactically not required.

begin
MyStatement;
MyNextStatement;

MyLastStatement; // semicolon optional but required by this style guide

end;

8.1.1 Assignment and expression s tatements

jcl.delphi-jedi.org/.../styleguide.html

12/18

22/02/2010 JCL Delphi Language Style Guide

Each line should contain at most one statement. For example:

a := b + ¢; Inc(Count); // INCORRECT
a :=b + c; // CORRECT
Inc (Count) ; // CORRECT

8.1.2 Local variable declarations

Local variables should have Camel Caps, that is, they should start with a capital letter, and have capital letters for the
beginning of each embedded word. Do not preface variable names with an F, as that convention is reserved for Fields in a
class declaration:

var
MyData: Integer;
MyString: string;

You may declare multiple identifiers of the same type on a single line:

var
ArraySize, ArrayCount: Integer;

This practice is discouragedin class declarations. There you should place each field on a separate line, along with its

type.

You should only declare identifiers on a single line if they are logically related.

8.1.3 Array declarations

There should always be a space before the opening bracket "[" and after the closing bracket.

type
TMyArray = array [0..100] of Char;

8.2.3 if statement
If statements should always appear on at least two lines.

Example:

if A < B then DoSomething;

if A < B then
DoSomething;

In the JCL the first example is allowed but discouraged. Use it only in "obvious" situations such as "if
ParameterIncorrect then Exit;"

In compound if s tatements, put each element separating statements on a new line:
Example:

// INCORRECT

if A < B then begin
DoSomething;
DoSomethingElse;

end else begin
DoThis;
DoThat;

end;

// CORRECT
if A < B then
begin
DoSomething;
DoSomethingElse;
end
else
begin

jcl.delphi-jedi.org/.../styleguide.html

13/18

22/02/2010 JCL Delphi Language Style Guide
DoThis;
DoThat;
end;

Here are a few more variations that are considered valid:
Except for the second one, all these variations are discouraged.

// CORRECT
if Condition then
begin
DoThis;
end else
begin
DoThat;
end;

// CORRECT
if Condition then
begin
DoThis;
end
else
DoSomething;

// CORRECT
if Condition then
begin
DoThis;
end else
DoSomething;

if Condition then
begin
DoThis;
end
else DoSomething;

One that has fallen out of favor but deserves honorable mention:

if Condition then
DoThis
else DoThat;

Awoid extraneous parentheses when formulating the conditional in an if statement. In other words, don't encapsulate the
conditional statement in parenthesis if it's not syntactically required and doesn't provide additional readability. An
obvious example:

// CORRECT
if I > 0 then
DoSomething;

// INCORRECT
if (I > 0) then
DoSomething;

8.2.4 for statement

Example:

// INCORRECT

for i := 0 to 10 do begin
DoSomething;
DoSomethingElse;

end;

// CORRECT
for i := 0 to 10 do

jcl.delphi-jedi.org/.../styleguide.html 14/18

22/02/2010 JCL Delphi Language Style Guide

begin
DoSomething;
DoSomethingElse;
end;

If the body of the for loop consist of a single statement then both of the examples below are allowed. As with if statements,

the first one is discouraged though.

for I 0 to 10 do DoSomething;
for I := 0 to 10 do
DoSomething;

8.2.5 while statement

Example:

// INCORRECT

while x < j do begin
DoSomething;
DoSomethingElse;

end;

// CORRECT
while x < j do
begin
DoSomething;
DoSomethingElse;
end;

The same as with for loops applies here. Both of the following examples are allowed but the first one is discouraged.

while x < j do Something;

while x < j do
Something;

8.2.6 repeat until statement

Example:

// CORRECT
repeat

x = 3

j UpdateValue;
until j > 25;

8.2.7 case statement

Example:

// Discouraged
case Control.Align of

allLeft, alNone: NewRange := Max (NewRange,
alRight: Inc(AlignMargin, Control.Width);
end;

// Discouraged
case x of

csStart:
begin
j := UpdateValue;
end;

jcl.delphi-jedi.org/.../styleguide.html

Position) ;

15/18

22/02/2010 JCL Delphi Language Style Guide

csBegin: x := j;

csTimeOut:
begin
j o= x;
x := UpdateValue;
end;

end;
// CORRECT

case ScrollCode of
SB_LINEUP, SB_LINEDOWN:

begin
Incr := FIncrement div FLineDiv;
FinalIncr := FIncrement mod FLineDiv;
Count := FLineDiv;
end;
SB_PAGEUP, SB_PAGEDOWN:
begin
Incr := FPagelIncrement;
FinalIncr := Incr mod FPageDiv;
Incr := Incr div FPageDiv;
Count := FPageDiv;
end;
else
Count := 0;
Incr := 0;
FinalIncr := 0;

end;

In the JCL only this last variation is correct. That is, each case label starts on a separate line with a two column indent
relative to the case statement and the body of that particular case follows on the next line with an additional two column
indent. If the body on a particular case consists of only a single statement then the begin...end pair can be omitted. In this
case the statement is aligned using a two column indent relative to the case statement (identical to the begin reserved
word in the example above).

8.2.8 try statement

Example:
// Correct
try
try
EnumThreadWindows (CurrentThreadID, @Disable, 0);
Result := TaskWindowList;
except
EnableTaskWindows (TaskWindowList) ;
raise;
end;
finally
TaskWindowList := SaveWindowList;
TaskActiveWindow := SaveActiveWindow;
end;

9.0 JCL Additions

Below are some more additonal rules and conventions which should be followed for all JCL sourcecode files.

9.1 Const, Var and Type

The reserved words var, const and type always appear alone on a line. These example are correct:

type
TMyType = Integer;

const
MyConstant = 100;

jcl.delphi-jedi.org/.../styleguide.html

16/18

22/02/2010 JCL Delphi Language Style Guide

var
MyVar: Integer;

But these are not:

type TMyType = Integer;
const MyConstant = 100;

var MyVar: Integer;

Additionally a procedure should only have a single type, const and var section and, if possible, in that order. For example:

procedure SomeProcedure;
type
TMyType = Integer;
const
ArraySize = 100;
var
MyArray: array [l..ArraySize] of TMyType;
begin

9.2 Conditional compilation

All JCL units must include the JCL.INC file. This file defines a number of global directives. The include statement should be
placed between the unit and interface keywords. As an aside, no one is allowed to modify the JCL.INC file without first
consulting the JCL coordinators team (through jel@delphi-jedi.org). When using any of the directives from this file, or others
for that matter, you should always repeat the conditional in the ENDIF directive. For example:

{$IFDEF WIN32}
// conditionally compiled code
{SENDIF WIN32}

This may seem overkill if the conditionally compiled code only extends a few lines but is a tremendous visual aid when the
code actually spans multiple pages of code (as is often the case for platform dependent code).

9.3 Resource strings

All resourcestrings should be of the format 'Rs'[Category|[Name]. [Category] should be (an abbreviation of) the category in which the code resides, [Name] is a
descriptive name for the string itself. For example, the TJclCriticalSectionEx CreateEx constructor raises an exception on initialization failure. The exception
message is declared as a resourcestring with the name RsSynchInitCriticalSection.

All resourcestrings must be declared in the global JcIResources.pas file which is included in each JCL unit. This is to ease translation. Literal strings should be
avoided where possible (use a constant whenever you can).

9.4 Exceptions

Exceptions are prefixed with 'EJcl' instead of "TJcI'. All JCL exceptions should be ultimately derived from EJclError which is declared in JcIBase.

‘When raising an exception you should prefer the CreateRes(ResStringRec: PResStringRec) constructor for efficiency. Thus, an exception is raised like this:

raise EJclSomeException.CreateRes (@RsSomeResourceString) ;

9.5 Categories and routine separation

Typically each JCL wnit is a single category. For example, Jc1Synch contains all kinds of synchronization classes and subroutines. Within a unit there is usually a further categorization, for example JcISynch has a number of 'Locked Integer
Manipulation' routines which form a subeategory within this unit. In the interface section each subcategory is divided using two 80 column width lines in between which there is a one line description of the subcategory. For example:

function LockedAdd (var Target: Integer; Value: Integer): Integer;
function LockedCompareExchange(var Target: Integer; Exch, Comp: Integer): Integer;

In the implementation section this separation is identical except that the lines are composed using the equals character (5).

function LockedAdd (var Target: Integer; Value: Integer): Integer;
asm
MoV ECX, EAX

In the implementation section each routine or method is separated from its predecessor using a 80 column width line composed of minus characters (-).

if (L > 0) and (Path[L] <> PathSeparator) then Result := Path + PathSeparator;
end;

function PathAddExtension(const Path, Extension: string): string;

begin
Result := Path;
if (Path <> '') and (ExtractFileExt(Path) = '') and (Extension <> '') then
begin
if Extension[l] = '.' then
Result := Result + Extension
else
Result := Result + '.' + Extension;
end;
end;

function PathAppend(const Path, Append: string): string;
var

PathLength: Integer;

Bl, B2: Boolean;

begin
if Append = '' then
Result := Path
9.6 Assembler
Assembler is formatted like this:
REP MOVSW
JMP @e2
@e1
LEA ESI, [ESI + 2 * ECX - 2]

jcl.delphi-jedi.org/.../styleguide.html 17/18

22/02/2010 JCL Delphi Language Style Guide

LEA EDI, [EDI + 2 * ECX - 2]

That is, the opcode is indented 8 spaces and the operands are aligned on the 16th column. Labels should be indented with two spaces or aligned on the left side and be camel case. All opcodes and registers should be written fully in uppercase.
Numeric labels are acceptable but a more descriptive name is preferred. General punctuation formatting still applies, e.g. a single space after each comma and a space on both sides of an operator (such as the addition operator i
never put labels and commands on the same line and always prefix labels with the @ character to make the label scope local. Generically speaking, assembler should be avoided but if it is used it should be heavily commented.

9.7 Local routines

Local functlonsshould be Indented two siaces fn thlr ety and separated from the prosedure declaration and begin satement by a single line. If the ‘outer! proccdure (SomeProcedure In the example) haslocal variabies these should be declared
before the local procedure, regardless of whether the local procedure needs access to them. er, local routines should be avoided. Whenever it seems reasonable to extract code as a local subroutine, think carefully whether the routine can be
made more generic and extracted as a normal, global routine (of course should be moved to the appropriate unit as well). For exampl&

procedure SomeProcedure;
var
I: Integer;

procedure LocalProcedure;
begin

end;
begin

LocalProcedure;

9.8 Parameter declarations
When declaring the parameters list of a procedure, function or method, observe the following recommendations:

n mbine formal parameters of same type into one statement
. Lsagt of A in parameter names is discouraged unless it concerns a method of a class which has as a property which is named identical.

Although technically these are not formatting issues, I'd like to methion them here anyway:

® Ordering of parameters should be: input, input./output and output parameters and within that ordering: most used, least used. Parameters with default values are, as required by the Delphi language rules, always placed at the back of
e list.

s use does not increases the efficiency of the parameter passing. For example, a parameter of type Integer should be declared with the const modifier if that's the semantic

= Use of const for parameter types is recommended even
meaning of the parameter in question.

of this, if the global variable needs to
the executable and later in memory. If

pointer is initialized to nil. Beca
fluences how the variable ends uj

¢, like class members, automatically initiali to
‘which is often the case, this should not be done explict

it ed,
you desire you can add a comment to indicate reliance on 0 initialization

This has different meaning for different types. For example, and lnteger is initialized to 0 wi
Instead you should rely on Delphi to do this for you. This is for efficiency reasons btw because
ke so:

var
MyGlobalvariable: Pointer{ = nil};

jcl.delphi-jedi.org/.../styleguide.html

18/18

