Verbesserung von
Softwarequalitat in Delphi

Jeroen Pluimers
Edwin van der Kraan

jpluimers@better-office.com
evdkraan@better-office.com
better office benelux

Welcome

* Target of this course
* better office benelux

CODE o
COMPLETE

nJ
Rt (€]

better
office

VA Y A3y
Why Software Quality ?

* Software is getting more and more
important in all aspects of (human)
life,
so failures have a big impact

* All serious applications need
modifications in due time, software
life-cycles are not predictable

* Quality reduces stress

How can you study -

Software Quality ?

* Books and articles have been written
- Increases your insight
- Stimulates good practices
- Enables you to argue about a decision

e .. But that is not the emotional side
* Building quality software depends on your

passion for
- developing the right way and

®

e — do it right the first time.

Software Quality: -

the human factor
*<images>
- Group of people with communication
—Draw right and left handed
- Emotion versus Technique

®

VA Y Na
RAD

‘Developing software faster
than you do now’

Steve McConnell

better
office

What is RAD and what A

does it have to do with Quality ?

RAD = Rapid Application Development
- Not just for the first phase

* Doing it right the first time helps a lot
Low-effort, high-payoff techniques

* Decisions like
- Make or buy
- Reuse
* But:
- there is no silver bullet

office a

Low-effort / High-payoff techniques

* Aim to find
- low-effort techniques,
- principles and guidelines that have a high
payoff
* For instance:
- improving the quality of methods and
comments can
greatly ease the task of creating

documentation
(‘the asterisk problem’)

better
office

VA Y A3y
Upstream / downstream

* Where did you introduce that bug ?

-Create processes that help you to find
bugs as soon as possible

- F|x the bug when it’s found

://se.uwaterloo.ca/ldberry/ COURSES/software.engr/lectures.pdf/inspect.pdf

- -

o —
50

better I
Joffice] req's design code

VA Y AN
Frameworks

* Delphi is a fabulous general-purpose
development tool.

* But it gives the average developer too
much freedom and too many choices
that have to be made thoughtfully.

* The consequences are:

- stress

- wrong decisions

- repetitive and boring work é

better

A Y AN3)
Frameworks

*Set of
* Components, objects, routines
* Guidelines
* Documentation templates
*Tools
—that lays on top of the development-
tool with the aim to standardize and
speed-up software construction.

®

VA Y AN
What do you need for quality ?

*You need a framework for rapidly
developing quality Delphi
applications

* The design of your framework
should be based on principles that
are key to quality

better

Key Principles

...in a platform/language
agnostic way

nNJ

Break up your sourcecode !

* Gains:
—Focus attention and energy
—Decrease complexity for the developer
—Increase (conceptual) overview
—Information Hiding
—Localise changes

better

A Y AN3)
Cohesion

* “The act or condition of sticking
together; a tendency to cohere; the
force with which molecules cohere”

* Strong cohesion is good;
weak cohesion is bad

* It should be basically impossible to
seperate the parts within a ‘unit’

®

INJ Riet
Coupling

* “A link connecting railway carriages etc;
a connection between two systems”

* Loose coupling is good;
tight coupling is bad

* A communication-path should be as less
specific as possible (no knowledge of
internals of the other unit)

better

A Y AN3)
Interfaces

* “A surface forming a common
boundary between two regions; a
point where interaction occurs
between systems”

¢ Interfaces should be defined and
documented formally

VA VAN
Indirection

* “Not going straight to the point”
* Indirection is very good;
up to a certain point

* Indirection gives you more control
over communication in a centralized
location

®

better
office

VA Y AN
Indirection

Private Variable

‘read Twrite
ProperE/ -—|
I

Simplify

* “Make simple; make easy or easier
to do or understand”

* Simplification is good
* Make your application and
especially the structure of the

Create Documentation

* “The most important part of design that
gets started when the application is
almost finished and often is done by
handwritten notes in a scrapbook”

* Documentation should be done right the
first time

* Create guidelines and templates
for Word and source-code

yread Twrite application as simple as possible
Clie-nt I * Low-tech is more maintainable than
| igh-tech
c:)ffice e e
A Y AN3) VA Y AN

®

Create Documentation

* Source code is often the only
accurate description of the software.
So make sure it is readable and of
the highest quality.

better
office

VA Y ANag
Use OOP wisely

* Abstraction
* Encapsulation
* Inheritance
- Multiple Class Inheritance is not such a good idea
* Polymorphism
- (Multiple) interface implementation is a good idea

* When used properly, OOP can increase
quality, but if not it will make things very bad

better
Joffice

Delphi

some key principles in more
detail...

5e
@

VA Y ANas
Self-documenting code

*The only part of the software that is
guaranteed to be done is the code!
* So create self-documenting code
-Variable and method names
—Proper layout

Comments

* A comment can be
—Repeat of the code
- Explanation of the code
—Marker in the code

—Summary of the code

office a

—Description of the code’s intent

better

A Y AN3)
Comments

* Make writing comments as smooth as possible
- Layout
* No special formatting (VCL unit headers are a dork!)
* No endline // comments, except for declarations
- PDL-to-code (Program Design Language)
* Start with some comments on the ‘what’
* Then replace them with the ‘how’
- Comment as you go

- Avoid excessive commenting

VA Y AN
Comments

* Make every comment count
—Do not comment for silly purposes
—Document surprises and workarounds
—Avoid abbrvtns

‘Don’t document bad code - rewrite it’
Kernighan and Plauger (1978)

®

better
office

VA Y ANas
Constructing readable sourcecode

* Sourcecode Layout
-Consistency is important
- Editor options:

- Quality layout matches
the logical structure of the code

VA Y ANy
Constructing readable sourcecode

* Sourcecode should be formatted for
the human reader, not the computer

—Accurately represent the logical
structure

—Consistently represent the logical
structure

—Improve Readability
—~Withstand modifications

®

better

VA Y ANas
Constructing readable sourcecode

* Use whitespace

- Grouping

- Blank lines

- Make logical expressions readable
* Alignment

- Groups of related assignments

- Data declarations
* Indentation (2 - 4 spaces is best)
* Use more parentheses

office a

Constructing readable sourcecode

* Indentation styles
http://courses.knox.edu/cs322/322PDFLectures/L16Coding.pdf

— Pure blocks are not an option in pascal

i H f if (i > 10) then
- Endline layout is horrible RN e O
if (i > 1000) then begin statement2;
X 21; end;

y 36;
end

else z := 15;

- Emulated pure blocks
- Begin-end block boundaries

better
loffice]

VA Y ANas
Constructing readable sourcecode

* Do not use lines longer than
the screen width
(80/100/... characters)

* Layout comments with their
corresponding code

* Use paragraphs

-White space is important!

()

VA Y AN
Use assertions

* Document pre- and post-conditions
using comments,
especially if they are not obvious

* Check for pre- and post-conditions
using the Assert keyword

Assert(Count > 10,
'not enough records');

better
office

A Y AN3)
Use Assertions

« procedure Assert

expr Boolean _
[; const msg: string]

* Raises
- EAssertionFailed

Debugging

W Debug information

W Local symbols

I™ Referznce info]
= | Defititians onlh

W Assertions [C)

I™ Use Debug DCUs

* Project Options | Compiler

)

VA Y Na
Exception handling

*Try...Finally
*Try...Except

* Global Exception Handler
—in message loop of TApplication

* TApplicationHandler

better
loffice

VA Y ANas
Implementation, Interface

e Declarations in interface can be
seen outside that unit

*The interface section cannot contain
statements (executable code)

*Variables declared in the interface
section are globals: don’t use them

Classes and access-modifiers

e private
- available only in that class and that unit
protected
- private + available in subclasses
e public
- available to anyone who USES that unit

published

- Runtime Type Information (RTTI) is generated. The Object
Inspector needs RTTI to show properties and events.

strict private / strict protected
- Since Delphi 2005:

office e

Like private / protected, but excludes the unit

better
office

A Y AN3)
Interfaces and Classes

* Classes implementing interfaces is another
form of Polymorphism
- Some call it the “true polymorphism”...

* Be aware of reference countin
http://wiert.wordpress.com/2009/08/20/delphi-tinterfaceddatamodule-revisted-
inherited-in-your-dfm-files-when-your-datamodules-look-like-forms-in-the-designer,

* Some notes
- The .NET framework relies heavily on Interfaces
- The VCL framework not, because of backward
compatibility
- But you are free to do your own!

VA Y ANy
Properties

* Learn to create properties, also in forms
and datamodules

* Use Set- and Get-methods where
appropriate
e Ctr1-Shift-Ccan be a great help

* Using ModelMaker Code Explorer helps
even more

®

better

- www.modelmakertools.com/code-expIoreé

A Y AN3)
Events

* An event is a property of datatype ‘method-pointer’

type
TNotifyEvent = procedure (Sender: Tobject) of object;

- It contains two pointers
* To an object instance
* To a method

* You can assign events at runtime
MyForm.Buttonl.Click := MyForm.Button3cClick;
* Events are a terrific way to decouple units
(two-way communication with a one-way USES
clause)

* Delphi unfortunately has a single-cast event

mmewhandling system
i =]

VA VAN
Datamodules

* Datamodules is not about data
-They are about “non-visual”

* Use datamodules for all situations,
where you want to
- easily use Delphi components,
- adapt properties in design-time,
- create events in design-time

better

—do not need user-interface é

VA Y ANas
TActionList / TActionManager

» Use TActionLists to separate application
code from the User Interface

* TActionLists allow you to bring events
from the form to the datamodule

* And they centralize some Ul-properties
(is this good?)

* They have some quirks, so make sure
you try before you use them

office a

TFrame and Visual Form Inheritance

*Visual Form Inheritance and
TFrames and are not always good
for maintenance:

—you can (too) easily change
‘descendants’

* It is better to create your own
“SuperComponents”, for instance
based on TFrame

better

VA Y A3y
Build your own components

* “Component Templates” are good
for
copy-paste, don’t use them as a
replacement for components

®

VA Y ANy
Build your own components

* Creating your own components can
—Dramatically speed up development

—Make your applications behave and
feel much more consistent

-Reduce maintenance, because of one
central code-location

better
office

VA Y ANag
Code generation

* Makes maintenance more difficult most
of the time, because of code-duplication
* This can be made better when the
generator
- supports round-trip engineering (two-way)
- generates classes in a hierarchy

* TBaseXxxx
* TXxx (generated once)

(generated each time)

®

Good programming
techniques

that work for any language or
platform

5e
@

y A VAN
Think

* Study at SEL 1987 found that extensive
computer use (edit, compile, link, test) is
correlated with low productivity.

* Of course our tools have changed a lot.

* But still:
use your brain, not just your compiler !

office e

better

Think

Write your code for the reader,

not for yourself.

o

VA Y A3y
Code defensively

* Always assume that
you or somebody else
is going to make mistakes
-Keep the code simple
—Anticipate problems
-Use assertions liberally
-Document difficult code

Coding: methods

e & @
VA Y ANy VA Y AN
1. Design the method 2. Code the method
* Define e Code
B :lurp°se —Construct the declaration
-ame (that’s the interface of the routine)

- How to test it

- Research re-use
* Write PDL (Program Design Language)
* Think about the data
* Check the PDL

¢ lterate

®

—Turn PDL into comments

—-Fillint
—-Check

—Clean up the leftovers

—Iterate
better

he code below each comment
the code informally

©

y A VAN
3. Check the method

* Check
—Mentally check the code for errors
—Compile the code

-Use the debugger to step through the
code

—-Remove errors

—Iterate

office e

Coding: Data

%e
@

VA Y ANas
Creating data

*Use
-User defined types
-Classes
-TClientDatasets

®

VA Y ANy
Creating data

* Use a template to declare variables

var
Index: Integer; // meaning of Index: better rename Index

* Document the meaning of variables
* Use naming conventions

—F* for private variables
* Remove unused declarations

better

VA Y ANas
Creating data

¢ Initialize each variable close to

where it is used (not at the top of the
method)

Keep related actions together

Principle of proximié

better
Joffice

VA Y ANy
Creating data

* Use the initialization-section to
initialize variables with a global
scope and lifetime.

better
office

Data names

* A Variable = Its Name
* Use good names

- Readable

- Memorable

- Appropriate

A variable should fully and accurately describe

Data names

* Use obvious words
—‘LinesPerPage’ is much better than
‘LPP’
* Express the what, not the how
—‘PrinterlsReady’ instead of ‘BitFlag’

the entity that the variable represené

10-16 characters
8-20 characters

-Optimum:
—-Almost as good:

*Use i, jor x only in a limited, local
scope

* But as soon as loops are nested,

se longer names
office

- Temporary may indicate that you aren’t
sure of their real purposes

* Same with names like:

- Util/Utils
-Tool/Tools
- Misc
- Other

better

bt (=]
FAY ANy VA Y AN
Data names Data names
* Length * Watch out with ‘temporary’ variables

Data names

* Typical boolean names
- Done
- Error
- Found
- Success
* Boolean variables names should
—imply True / False (not: ‘Status’) and

better
Joffice

- they should be positive (not: ‘NotFound').e

VA Y Na

Data names

* Enumerated Types and Sets
- Use prefixes (or suffixes) to group values

* Often better than booleans
especially when used as parameters

procedure Paint(value: string; Background: Boolean = True)
paint('Programming is fun!', False);
- Versus

type
TPaintBehaviour = (bhForegroundonly, bhBackgroundAndForeground)

procedure Paint(value: string;
Behaviour: TPaintBehaviour = bhBackgroundAndForeground)

Paint('Programming is fun!', bhForegroundonly);

better
office

©

Data names Data names: abbreviations

* Constants * In general:
. - Don't
—-Variables Don't; Constants Aren't
* If you have to:

- Do not remove just one characte from a word

*Don’t use capitals and underscores _ Abbreviate consistently

° que them Iike thG - Create names that you can pronounce

- Avoid combinations that result in mispronounciation
- Use a thesaurus

¢ http://en.wikipedia.org/wiki/Constant (programming) - Document short names with translation tables

T better
office

VA Y ANy VA YA
Data names: abbreviations Data names: abbreviations
* Avoid * Avoid
- misleading names or abbreviations - Mispelled words in names
- names with similar meanings - Words that are commonly mispelled

- variables with different meanings but similar names — Names of standard routines and variables

- Names that sound similar or can be pronounced obscene _ Names that are totally unrelated to what

¢ Uranus
. they represent
- Numerals in names .
« ForWeddingsAndAFuneral - Names that contain hard-to-read
characters

(‘confusion’ vs. ‘cOnfusion’)

better better
Joffice] office

] AV
Naming Conventions Naming Conventions
* Global decisions + Identify type definitions (‘T’, ‘E’)
* Transfer knowledge * Identify fields (‘F)

* Format names to enhance readability

fieduce pome piolifergtion (not “GYMNASTICSPOINTTOTAL")

) * Optionally:
* http://stackoverflow.com/questions/262892/what- Identify global and module variables
delphi-coding-standards-documents-do-you-follow (‘g anglm)
- Embarcadero/CodeGear/Borland standard d Bette_r' -
-JCL/JVCL standard - Do not use globals at all:
wmm ~ ECONOs standard e memm — Use class variables in stead. é
officel

Naming Conventions

* Some use Hungarian

MMMMMMMMM

Variables: general issues

* Scope
- Minimize scope

-Use each variable for exactly one
purpose
* One purpose only
* Avoid hidden meanings (1..100, -1)
*Use all declared variables

better
Joffice

—Inadvertent changes to global data
—Aliasing problems with global data
-Thread conflicts

- Code reuse hindered by global data

—Modularity and intellectual
manageability damaged by global

better d ata

-Base types - Keep references to a variable together
(wn [Window], ch [character]...)
Prefi * Binding
—rrernixes - Use late binding for the contents of variables
(a [array], ¢ [count]...) * Code-time A= 47;
e * Compile-time A := NumberOfBars;
-Standard Quqllflers * Run-time A := GetNumOfBarsFrominiFile ();
(Min, First, Last...)
o &)
office] office
. . NET . . VA Y AN
Variables: general issues Variables: general issues
*Use * Problems with globals

©

Variables: general issues

* Instead of globals
-Create access routines

—Create a global variable that contains
an object with properties
(Application : TApplication in
Forms.pas)

-Use class variables

better
Joffice

Fundamental Data Types

¢ Avoid ‘magic numbers’ and ‘magic strings’, use
constants instead
* The use of 0 (zero) and 1 (one) is allowed
* Make type-conversions obvious
- Use a type-cast or
- Use a conversion
* Avoid mixed-type comparisons
and floating point comparisons
if (Pi = 3) then // bad for 2 reasons
* Heed your compiler’s warnings
- The compiler is almost always right

better

VA Y Na

Coding: Control statements

Using conditionals

if (x) then
begin
//
end
else
begin
//

end;
better
loffice]

VA Y A3y
Using conditionals

* Let the nominal path through the
code not be obscured by the
exceptions

¢ Put the normal case after the if

®

VA Y ANy
Using conditionals

¢ Follow the if-clause with a meaningful statement

* Use >= etc. correctly: think through the endpoints
if not (a >= 10)
if (a < 10)
¢ Consider the else clause and
maybe even create one to document that the else
clause was considered:
if (FailurecCondition) then
HandleFailure()
else
; // no need to handle success

* Check for the flip-flop error

better
loffice

VA Y ANag
Controlling loops

* Select the right kind of loop

- FOR...NEXT
-FOR...IN

- WHILE...DO
- REPEAT...UNTIL

test at begin of loop

test at end of loop;
runs at least once

®

VA Y AN
Controlling loops

* Initialize variables directly before the loop

* Do variable housekeeping for the loop at the
beginning or end of the loop

* Make each loop perform only one function
* Assure yourself that the loop ends

* Make termination conditions obvious

* Don’t monkey with the loop index (i)

* The loop index is undefined after exiting the
loop!

better
loffice

Controlling loops

* Avoid
- CONTINUE
-BREAK
-EXIT

¢ Use if-statements instead

office e

Controlling loops

* Make your loops short enough to
view all code at once

* Limit nesting to three levels
* Make long loops especially clear

better
office

A Y AN3)
Unusual Control structures

e Goto
* Recursion

—Make sure it stops
(use safety counter during debug/test)

- Limit to one routine (not: A> B > C)
-Keep an eye on the stack

®

VA Y AN
General Control structures

* Booleans
—Make complicated tests simple:
break them in parts or use functions

—Form boolean expressions positively
*if not Failure
*if not NoSuccess
*if Success

—Use parentheses

better
office

A Y AN3)
General Control structures

* Compound statements
(begin/end blocks)
- Use them instead of single statements
- Do not nest too deeply
* Retest some of the conditions
*Use if...then...else
*Use a CASE statement

¢ Construct new methods

better * Redesign deeply nested code

Modularizing data layers

Cohesion, coupling, interfaces, indirection,
simplify

All'in one example

Delphi - Modularization

* Average Delphi app unit structure

better
office]

o

* Good Delphi app unit structure

better
office

Delphi - Modularization

¢ Look for modularization in real life...

- Houses - rooms
- Cities - suburbs/blocks
- People - digestion system
- Parliament - parties

* Sometimes modularization works

©

* Sometimes it doesn’t

better
office]

VA Y iNap
How come good is better than bad?

()

Modules are everywhere...

* So why does it work?
—Internal Cohesion

- External Coupling
¢ |f also ‘uniform’:
¢ |f also ‘directional’:

great!
even better!

better
office]

L. Modularization - DataSource
Modularization - database apps
* Let’s apply this knowledge o o
to our database apps FS— - =
e s W, R e
e\ N WS [Ly T " - (T
* Especially: where to put the . :?;2\;: m/ om HE /f %ﬂ:ﬁ: -
DataSource... e o /
*Where is your DataSource? Bad 3 Internal Links Good 6+2 Internal
% 6 External Links 2 Externale

()

Modularization - the datasource Modularization - gain
DataS has ¢ | * Flexibility
ataSource has two goals _Change of GUI
* Binding GUI controls ch (D A
* Providing Master-Detail relations ~Change of Data Access

—Re-use of modules across projects
-GUI binding:

put DataSource on Form
—MD-relations:
“2<1 put DataSource on DataModule e e

better better
e

Know your VCL Know new features
Delphi 5 Object Hierarchy.pdf for...in
Delphi 7 - VCLHierarchyPoster.pdf Generics

Anonymous methods

NET

@ & ®

VA Y ANy VA Y AN
for ... in Data types supporting for ... in
s for Win32, it was introduced ~These ‘i“t“ :Iypei .
2 * provide either of these:
in D2005 -function GetEnumerator: T..Enumerator;
— On Iots of built_in data types -function GetEnumerator: IEnumerator;
«Arrays ¢ and the result provides these functions:

-constructor Create(
const AObject: T..Object);

o d - function GetCurrent: T..;
- On many data types -function MoveNext: Boolean;

—-property Current: T.. read GetCurrent;
* Components, Actions, Menus, Fields, - The compiler then recognizes it supports

for...in
better S many, many more ... better

* Strings

¢ Lists, Collections, Trees,

VA Y ANas
Business logic versus glue...

procedure TxokumDataModule.GetMinMaxAbonneeNummeroldstyTe(
var MinAbonneenummer: Integer;
var MaxAbonneeNummer: Integer);

var
wasActive: Boolean;

begin
MinAbonneenummer := High(Integer);
MaxAbonneeNummer := Low(Integer);
wasActive := XokumClientDataSet.Active;

XokumClientDataSet.Open;
XokumClientDataset.First;
while not XokumClientDataSet.tof do
begin
if XokumClientDataSetabonneenummer.value > MaxAbonneeNummer then
MaxAbonneeNummer := XokumClientDataSetabonneenummer.value;
if XokumClientDataSetabonneenummer.value < MinAbonneeNummer then
MinAbonneeNummer := XokumClientDataSetabonneenummer.value;
XokumClientDataSet.Next;
end;
if not wasActive then
XokumClientDataSet.Close;
end;

Wouldn’t it be nice to...

procedure TxokumbDataModule.GetMinMaxAbonneeNummer (
var MinAbonneenummer: Integer
var MaxAbonneeNummer: Integer);
var
Index: TDataSetEnumerationRecord;
begin
MinAbonneenummer := High(Integer);
MaxAbonneeNummer := Low(Integer);
for Index in XokumClientDataset do
begin
if XokumClientDataSetabonneenummer.value > MaxAbonneeNummer then
MaxAbonneeNummer := XokumClientDataSetabonneenummer.value;
if XokumClientDataSetabonneenummer.value < MinAbonneeNummer then
MinAbonneeNummer := XokumClientDataSetabonneenummer.value;
end;
end;

better
(€]

better
office

VA Y ANay
Helpers

* Introduced in Delphi to support .NET
- The .NET class hierarchy differs from Win32 VCL
In the .NET framework, VCL methods and
properties were different or missing
* Helpers can make extensions at function level
-Yes: methods and properties
- No: instance data

* They also work in Delphi for Win32:

- Record helpers since Delphi 2006

Helpers

* Helpers (class or record):

—function as long as the helper is visible
to the user

*So:
—Helper in the same unit,
—or helper in a unit in the uses list

- Class helpers since Delphi 2005
better

()

better
office

A Y AN3)
Generics

* Great document:
ftp://ftp-
developpez.com/sjrd/tutoriels/delphi-
generics/delphi-generics.pdf
* Basically:
type
TList<T> = class(..)
var
MyIntegerList = TList<Integer>;
MyStringList = TList<string>;
* Lots of examples:

- see demo later on
better
office]

Anonymous methods

¢ Inline block of code

* Like a regular method

* With parameters

* Optional function result
* But without a name

¢ http://stackoverflow.com/questions/256146/can-someone-
explain-anonymous-methods-to-me
http://blogs.embarcadero.com/abauer/2008/09/25 3887@

better
office

VA Y ANas
Anonymous example

class procedure TScreenSupport.ExecutewithwaitCursor(const Proc: TProc);
var

oldcursor: Tcursor;

in

oldcursor := Screen.Cursor;
try
Screen.Cursor := crHourGlass;
procQ;
finally
Screen.Cursor := OldCursor;
end;
end

procedure TMyForm.ButtonlClick(Sender: Tobject);
in

TScreensupport . Executewi thwaitcursor(

procedure

begin
TExcelsupport.Export(OverzichtEnsemblestringGrid);

end

end;

®

Testing

http://stackoverflow.com/questi
ons/540617/best-way-to-test-a-
delphi-application

Code Refactoring

Rersctorine

ImPROVING THE DESIGN
OF Existivg Cong

NET

o e

Testing

* Makes you find bugs faster
* Helps “Fix the bug when it’s found”

* Makes your total process cheaper

—Prepare to move some budget from
“maintenance” to “development” cycé

better
office

Source testing

* By humans only:
—Pair programming
(immediate feedback)
—Peer review
(feedback at a later time,
for instance right before checkin)

®

Continuous integration

* Build all your targets
- By hand once every while
- On each checkin, automagically

* Helps find the “colleague A modifies X, but it now
breaks at colleague B in application Y” sooner

* Tools:
- Makefiles
- FinalBuilder
- CruiseControl

better
office

Unit testing

* Comes from eXtreme Programming
and Agile Programming

e Tests methods of classes

* Built-in Delphi since Delphi 2005

office e

Ul testing

* Use TestComplete from
AutomatedQA

* Good, not cheap (USD 999-1999)

better
office

VA Y ANay
General guidelines

* Develop more, smaller routines

* Reduce the number of globals

* Improve your programming style
* Manage changes

* Review code changes

* Retest

®

Constructing new methods .

* Reduce complexity
- by shortening
—by reducing nesting
* Share code

better
office

VA Y ANag
Code Tuning Issues

* Delivering on-time, on-budget
* Providing a clean user-interface
* Avoiding downtime

* Constructing maintainable code

...may be more important to the user than

VA VAN
Old Wives’ Tales

* Reducing the lines of code improves the size or
speed of the executable
- false
* Certain operations are probably faster or smaller
than others
- false
* You should optimize as you go
- false

“You can get 80 percent of the result
with 20 percent of the effort”

aw speed e

The Pareto Pringi
better
office

Strategies

* Use a profiler
- http://stackoverflow.com/questions/368938/delphi-
profiling-tools

-AQTime

—ProDelphi

-SamplingProfiler
* Use the compiler optimizations
* Use iteration

office e

Where’s the fat ?

¢ Database / Network traffic
¢ Other Input/output operations
* User interaction

* Speed in decreasing order
- Network
- UsB
- Hard drive
- Memory

All programming is an exercise in caching

= Terje Mothie
office

Techniques

Use a good modular design

Measure the system, if performance is poor
Determine the reasons for slow speed

Tune the bottleneck, if there is one

T ORI

Iterate

®

Wrap-it-up

& e

Share information

* Make the targets visible to everyone
on the team

e Store documentation in one central
place

* Always (!) document errors that you
found and the resolution to solve it

* Log bugs in one central place

better
Joffice

VA Y Na
Short Overview of Design Patterns

* Design Patterns is about
reusing approaches to problem-solving

* A Design Pattern consists of Design Patterns

Elements of Reusable

-The pattern name ObjectOrented Softvare
-The problem
—The solution

== ~ 1h€ consequences S

. VA Y AN
Ten essentials

for building good software

1. A product specification
2. A detailed user interface prototype
3. Arrealistic schedule
4. Explicit priorities
5. Active risk management
6. A quality assurance plan
7. Detailed activity lists
8. Software configuration management
9. Software architecture
10. An integration plan
from Steve McConnell

better
office]

Sample projects
Demo time...

The good, the bad and the ugly

Microsoft:

Discussion time

Microsoft:

12 Classic Mistakes

1. Undermined motivation

2. Uncontrolled problem employees

3. Noisy, crowded offices

4. Abandoning planning under pressure

5. Shortchanging upstream activities

6. Shortchanging quality assurance

7. Lack of feature-creep control

8. Silver-bullet syndrome

9. Wasting time in the ‘fuzzy front end’

10. Insufficient user input

11. Overly aggressive schedules

12. Adding developers to a late project

from Steve McConnell
better
office
better |
Tests
Belbin (xls) - the human factor
Joel - the team factor
Microsoft
NET
Moo
VA Y AN
Jeroen Pluimers
better office benelux
jpluimers@better-office.com
If you have questions after the workshop, please mail me
my blog: http://wiert.wordpress.com

better
office

