
1

Migrating apps

from Delphi 5 to Delphi 2006;

some notes on 2007 & 2009

Jeroen Pluimers
better office benelux

jpluimers@better-office.com

Business case:

Nationale Nederlanden
100+ apps in ≈ ½ year

Massive migration

• Overall
– Delphi 5 -----> Delphi 2006
– BDE -----> ADO
– Conversions must be done ‘in place’

• Servers
– NT4 -----> Windows 2003
– Apps -----> Services
– Single core -----> Multi-processor
– New version of Unisys imaging servers/software
– Development of service controller

• Clients (end-user and system maintenance)
– New revision of XP base install

• Yet another Acrobat Reader version
• No more BDE

– System maintenance tool restrictions
• No remote-logon / event-viewer access on the servers
• Only database access is allowed

But

•Code should still be as much
compatible to Delphi 5 as possible

•Reasons:
–Some applications outside our scope

depend on the library layers and were
staying at Delphi 5

–It enables potential regression testing
both in Delphi 5 and Delphi 2006

Overall structure

•Delphi RTL

•Delphi VCL

•3rd party libraries (few – phew)

•NN Library

•EA Library

•Apps

EA application/DB structure
MedeaMedeaMedeaMedea

Y35DDDDDDDDA00

Easy APIAPIAPIAPI
Y35EAEAEAEAA00 DLL

Easy ViewerViewerViewerViewer
Y35DODODODOA00

Easy IndexIndexIndexIndex
Y35ININININA00

DIS DIS DIS DIS callercallercallercaller
Y35DADADADAA00 APP

DIS APIDIS APIDIS APIDIS API
Y35APAPAPAPA00 DLL

Post Toewijzen
Y1SPTPTPTPTA00

SAP
systems

Easy

Info
Image

2

Multi-tier structure at NN

•Hardly any form-designer things

–Mostly hand-coded

HIC
Human

DMC
Data

TMC
Task

PDC
Business

SIC
System

Easy

Part 1

Project structure

People

• 0,5 manager
• 2,5 part-time

– Library conversion
– Overall conversion plan
– Technically difficult areas
– Coaching

• 2 full-time
– Doing grunt-work and basic testing

• X people
– Test phase

Most important

•Managing the process

–What to do

–When to do it

–Which people

•Managing the technical stuff

–See later on…

Planning

Overall plan / documentation

NN Library

EA Library

Client Apps

Server apps

Client DLL’s

New Services layer

Part 2

Technical port

Libraries

3

Biggest problems (1)

• Support both Delphi 5
and Delphi 2006

– Use conditional defines {$ifdef …}

• Delphi 2006 compiler is more strict, for instance with pointers
procedure CreateDatabase(DBName, User, Pswd: string);
var

status: array[1..19] of longint;
StatusVector: PLongint;

begin
//jpl: [Pascal Error] NNCRDBIB.pas(71): E2010
// Incompatible types: 'PLongint' and 'Pointer', dus [1] subscript toegevoegd

StatusVector := @Status[1];
//isc_dsql_execute_immediate(@status, //…

isc_dsql_execute_immediate(StatusVector, //…
end;

Biggest problems (2)

• Compiler continued…
– Delphi does the String --> PChar automatically, no @ needed
var

ClassNaam: array[0..255] of char;
begin
//GetClassName(ChildHandle, @ClassNaam, SizeOf(ClassNaam));

GetClassName(ChildHandle, ClassNaam, SizeOf(ClassNaam));

• FastMM finds more bugs
– Dynamically enable logging

• Consts.pas was changed to translate resourcestrings into
Dutch
– Not compatible with Delphi 2006
– Solved with dynamic resource substitution (demo!)

Easier issues (1)

• Variants require new Variants unit

• Classes need to implement Interfaces more
strictly
– Use methods/properties from interface in exactly

the same way
(i.e. use const, var, etc)

• TControl.SetAutoSize introduced in Delphi 7
– procedure SetAutoSize(Value: Boolean);

{$ifdef d7up} override; {$else} virtual; {$endif}

Easier issues (2)

•Some consts moved over to other units:
– RTLConsts, VDBConsts (Delphi 7+)

•Sometimes, TypeLibrary editor now
generates consts parameters:
– procedure CombineWith(

aLijst: IUnknown); safecall;

– procedure CombineWith(
const aLijst: IUnknown); safecall;

Easier issues (3)

• Since Delphi 7, MakeObjectInstance is now in Classes.pas
– In Forms.pas it is now deprecated.

• Since Delphi 7, TModalResult is now in Controls.pas
– It was in Forms.pas

• Since Delphi 6, DirectoryExists is now in SysUtils.pas
– so you don’t need FileCtrl.pas any more (which is platform dependent)

• Since Delphi 6, TVarData.VError is now a HRESULT
{$ifdef d6up}
TVarData(FEmptyVar).VError := HRESULT($80020004);

{DISP_E_PARAMNOTFOUND}
{$else}
TVarData(FEmptyVar).VError := LongWord($80020004);

{DISP_E_PARAMNOTFOUND}
{$endif}

Easier issues (4)

•Since Delphi 2006, a lot of Database
things now use WideStrings (new unit)
type
{$ifdef d10up}

TValueList = TWideStringList;
TAbstractValueList = TWideStrings;

{$else}
TValueList = TStringList;
TAbstractValueList = TStrings;

{$endif d10up}

4

Easier issues (5)

•Various Delphi versions introduce new
TTypeKind and TOrdType enumerations

– Only interesting if you do stuff at TField
descendent levels (NNPrpFld)

•Various Delphi versions introduce new
RTTI level things

– Only interesting if you do RTTI reflection
(NNRTTI)

Easier issues (6)

• Components icons
– On Tool Palette:

• 16 x 16 pixels
• 24 x 24 pixels

• 32 x 32 pixels

– On Forms/Datamodules
• 24 x 24 pixels

• Solution
– Keep the old 24 x 24 bitmap in your .DRC or RES file
– Add a new 16 x 16 bitmap with the same name, but with 16 as a suffix
– Add a new 32 x 32 bitmap with the same name, but with 32 as a suffix

• Example: DCLMID120.bpl
– TCLIENTDATASET – old 24 x 24 pixels bitmap
– TCLIENTDATASET16 – new 16 x 16 pixels bitmap
– TCLIENTDATASET32 – new 32 x 32 pixels bitmap

Time consuming (1)

• Unit filenames must be the same case as the unit
names
– File MyUnit.pas is not compatible with “unit myunit;”

• Separate packages in design-time and run-time
– DsgnIntf was split up in multiple units in Delphi 6
– DesignIntf is now in a design-time only package

• {$ifdef d6up}
• VCLEditors, // TMPFileNameEditor
• DesignIntf, // DsgnIntf renamed to DesignIntf in D6
• {$else}
• DsgnIntf,
• {$endif d6up}

Time consuming (2)

•Delphi 7 introduced new warnings

–To prepare for .NET

–Decide where to apply these:

•{$warn Symbol_Platform off}

•{$warn Symbol_Deprecated off}

•{$warn Unit_Platform off}

The process we took

For both Libraries and Apps

Process steps – include files

• {$i NNdefine.inc} in every unit
– Contains global defines

{$define d5} {$define d5up}
{$define d10} {$define d10up}

– Contains global compiler directives
{$ifdef d7up}

{$A4} { dword-align }
{$else}

{$A+} { align on a machine-word boundary }
{$endif d7up}

– Includes Project.inc 2 times:
• Prolog
• Epilog

5

Process steps – include files

• Project.inc (required per project)
– Prolog sets up NNdefine.inc parameters

• {$define develop} /
• {$define test} /
• {$define ship}

– Epolig reacts on NNdefine.inc settings
• {$warn Symbol_Platform off}
• {$warn Symbol_Deprecated off}
• {$warn Unit_Platform off}

– Can include ProjectGroup.inc for more global stuff

• ProjectGroup.inc (optional)
– Arranges stuff on a more global level

• {$define PdfViaAcrobat}
• {$define PdfViaIExplore}
• {$define FastMM} { test voor heap leaks }

Part 3

Technical port

Applications

Hardest issue

•The DLL’s were causing havoc
– Access violations

•{$A4} was required to get them to work

– Wrong versions of the DLL’s
•Watch your path

– Exported functions not found
•These are CASE SENSITIVE

•In the end, we refactored the DLL’s away

Easier issues

•NetMasters was removed in Delphi 6
– Use Indy instead

– In this case
•rewrite usage of TNMFinger with TIdFinger

•Accommodate differences between the two

•TModalResult moved from unit Forms to
unit Controls in Delphi 7

•TDataModule moved from unit Forms to
unit Classes in Delphi 7

Easier issues (2)

• Since Delphi 2005, virtual methods are case
sensitive
– Especially the Destroy method of TObject is case sensitive
– This is because of .NET issues, and package DLL exports

• actually, similar to DLL export issues – they are case sensitive
• Similar to the fact since Delphi 1,

the “procedure Register;” has been case sensitive
this impacted component writers, now it impacts more people

• [Pascal Hint] Y1SAAP022.pas(176): H2365 Override
method TPdcProcesQueryList.destroy should match
case of ancestor TEAObject.Destroy

FastMM

•Put all application logic in a separate
unit

•Project.dpr
– Uses all referenced units to:

•Make project manager happy
•Make form-inheritance work

•MainUnit.pas
– First unit used in Project.dpr
– Contains the actual main block
– Initializes FastMM and other stuff

6

FastMM – Project.dpr

{$i nndefine.inc}
program Project;
uses

MainUnit in ‘MainUnit.pas',
Y35AAD00 in '..\shared\Y35AAD00.pas' {DmcDataBase: TDataModule},
// …
Y35AAD18 in '..\shared\Y35AAD18.pas' {DmcEasy: TDataModule};

{$R *.RES}
begin

Main;
//Application.Terminate;

end.

FastMM – MainUnit.pas

{$I nndefine.inc}
unit MainUnit;
interface
uses
{$ifdef FastMM} FastMM4,{$endif FastMM}

NNNLResourceStrings, (*…*) Forms, SysUtils;
procedure Main;
implementation
procedure Main;
begin
{$ifdef FastMM} ReportMemoryLeaksOnShutdown := true;{$endif FastMM}

Application.Initialize;
// Application.CreateForm(……);
Application.Title := 'Easy Autoindex';
Application.Run;

end;
end.

Part 4

Refactorings

A bit out of scope, but still

Refactoring

•You should use this often

•Current corporate shortsighted
bureaucrazy usually shoots this
down

•But it makes your life a lot easier

–So do it anyway

–It will pay off in future cycles

Apps to services BDE ---> ADO (1)

•For BDE with SQL Server,
you need this DLL in your EXE subdir

–NTWDBLIB.DLL

•Throw this away when converted to ADO

–If your app now fails, it still contains some
BDE stuff

7

BDE ---> ADO (2)

• Delphi units that use
the BDE

– BdeMts

– DbExcept

– DBTables

– dbLookup

– drTable

– The Decision Cube
units

• TDatabase --->

– TAdoConnection

• TTable --->

– TAdoDataSet

• TStoredProc --->

– TAdoDataSet

• TQuery --->

– TAdoDataSet

– TAdoCommand

BDE ---> ADO (3)

•TAdoDataSet

–far better design-time support
than TAdoQuery and TAdoTable

•TAdoCommand

–For readonly stuff, far better
performance than TAdoDataSet

Get rid of DLL’s

•They were our biggest application issue

•Alternatives

– Go monolithic

•Embed everything in your EXE’s

– Go for packages

•Far better version mismatchs errors

•Far better type-safety

Exception refactoring

• Assess Exception usage
– EAbort is silent
– Empty “except…end” are vicious
– Reraising a different exception hides the original

•Use a kind of “InnerException” construct

– Object creation must be OUTSIDE the try:
myObject := TObject.Create;
try
// myObject := TObject.Create; // this is BAD!
finally

myObject.Free;
end;

Misc refactoring

• When returning objects from functions,
make sure who the owner is
– Alternatively, use Interfaces

•They are reference counted, so freeing is automagical

• Duplicate code
– Sometimes, whole units were copied

•Merged back into one, and cross-applied bugfixes

• Consolidating Database connections
– Your apps become faster

– Usually less transaction problems

From Delphi 2006

to Delphi 2007

to Delphi 2009

8

Delphi 2007

•Is VCL compatible with Delphi 2006

•Introduces Vista support

•You only need changes
if you actively want Vista support

–Glass UI

–Shield support

–Vista directory structures

Delphi 2009

•Breaking change

– Unicode strings

•Compiler progression

– Generics

– Anonymous methods

•Some examples in the slides *after* the
Q&A

Discussion time

What conversions are you
going to do

What are you afraid of

Q & A

Jeroen Pluimers
better office benelux

jpluimers@better-office.com
If you have questions after the session,

please mail me

